Search results for: A. Rayner
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: A. Rayner

4 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues

Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis

Abstract:

The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.

Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current

Procedia PDF Downloads 346
3 Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces

Authors: Saleh Alkarri, Melinda Frame, Dimple Sharma, John Cairney, Lee Maddan, Jin H. Kim, Jonathan O. Rayner, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces.

Keywords: anti-microbial activity, E. coli K-12 MG1655, anti-viral activity, SARS-CoV-2, copper-infused magnesium hydroxide, non-leachable, ROS, compounding, surface embossing, dyes

Procedia PDF Downloads 66
2 Secondary Traumatic Stress and Related Factors in Australian Social Workers and Psychologists

Authors: Cindy Davis, Samantha Rayner

Abstract:

Secondary traumatic stress (STS) is an indirect form of trauma affecting the psychological well-being of mental health workers; STS is found to be a prevalent risk in mental health occupations. Various factors impact the development of STS within the literature; including the level of trauma individuals are exposed to and their level of empathy. Research is limited on STS in mental health workers in Australia; therefore, this study examined STS and related factors of empathetic behavior and trauma caseload among mental health workers. The research utilized an online survey quantitative research design with a purposive sample of 190 mental health workers (176 females) recruited via professional websites and unofficial social media groups. Participants completed an online questionnaire comprising of demographics, the secondary traumatic stress scale and the empathy scale for social workers. A standard hierarchical regression analysis was conducted to examine the significance of covariates, traumatized clients, traumatic stress within workload and empathy in predicting STS. The current research found 29.5% of participants to meet the criteria for a diagnosis of STS. Age and past trauma within the covariates were significantly associated with STS. Amount of traumatized clients significantly predicted 4.7% of the variance in STS, traumatic stress within workload significantly predicted 4.8% of the variance in STS and empathy significantly predicted 4.9% of the variance in STS. These three independent variables and the covariates accounted for 18.5% of the variance in STS. Practical implications include a focus on developing risk strategies and treatment methods that can diminish the impact of STS.

Keywords: mental health, PTSD, social work, trauma

Procedia PDF Downloads 332
1 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52