Search results for: A. Baviskar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: A. Baviskar

2 Curcumin-Loaded Phenethyl Isothiocyanate Nano-Spheres: Preparation, Stability Study, and Its Implication for Cataract Prevention

Authors: Pankaj Dinesh Baviskar

Abstract:

This study examines the impact of curcumin-loaded nano-spheres in the form of emulsions on fish eye cataracts. Curcumin nanoemulsions were prepared by using phenethyl isothiocyanate. Nanoemulsions were synthesized by ultrasound-assisted method at 150 Watt. A zeta potential measurement for curcumin-loaded nanoemulsions was found to be -30.7eV, -13.4eV, and -9.55eV, and particle size was found to be 149.3 nm, 245.3 and nm 403.5 nm using particle size analyzer respectively for different conditions. The surface morphology of nano-spheres was examined by FE-SEM analysis. The zeta potential measured indicates its stability for corresponding nano-spheres. The anti-cataract application was studied by using isolated fish eye lenses. The cataract was induced using high glucose concentrated solution. The biochemical parameters in the form of reduced glutathione were measured to interpret the anti-cataract ability of curcumin-loaded nanoemulsions.

Keywords: curcumin, nano, cataract, nanoemulsion

Procedia PDF Downloads 115
1 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 276