Search results for: low molecular methyl siloxanes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2523

Search results for: low molecular methyl siloxanes

3 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction

Authors: Leila Safazadeh, Brad Berron

Abstract:

Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.

Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting

Procedia PDF Downloads 226
2 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 10
1 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127