Search results for: Andrea Palazzo
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 212

Search results for: Andrea Palazzo

2 Exploring Symptoms, Causes and Treatments of Feline Pruritus Using Thematic Analysis of Pet Owner Social Media Posts

Authors: Sitira Williams, Georgina Cherry, Andrea Wright, Kevin Wells, Taran Rai, Richard Brown, Travis Street, Alasdair Cook

Abstract:

Social media sources (50) were identified, keywords defined by veterinarians and organised into 6 topics known to be indicative of feline pruritus: body areas, behaviors, symptoms, diagnosis, and treatments. These were augmented using academic literature, a cat owner survey, synonyms, and Google Trends. The content was collected using a social intelligence solution, with keywords tagged and filtered. Data were aggregated and de-duplicated. SL content matching body areas, behaviors and symptoms were reviewed manually, and posts were marked relevant if: posted by a pet owner, identifying an itchy cat and not duplicated. A sub-set of 493 posts published from 2009-2022 was used for reflexive thematic analysis in NVIVO (Burlington, MA) to identify themes. Five themes were identified: allergy, pruritus, additional behaviors, unusual or undesirable behaviors, diagnosis, and treatment. Most (258) posts reported the cat was excessively licking, itching, and scratching. The majority were indoor cats and were less playful and friendly when itchy. Half of these posts did not indicate a known cause of pruritus. Bald spots and scabs (123) were reported, often causing swelling and fur loss, and 56 reported bumps, lumps, and dry patches. Other impacts on the cat’s quality of life were ear mites, cat self-trauma and stress. Seven posts reported their cats’ symptoms caused them ongoing anxiety and depression. Cats with food allergies to poultry (often chicken and beef) causing bald spots featured in 23 posts. Veterinarians advised switching to a raw food diet and/or changing their bowls. Some cats got worse after switching, leaving owners’ needs unmet. Allergic reactions to flea bites causing excessive itching, red spots, scabs, and fur loss were reported in 13 posts. Some (3) posts indicated allergic reactions to medication. Cats with seasonal and skin allergies, causing sneezing, scratching, headshaking, watery eyes, and nasal discharge, were reported 17 times. Eighty-five posts identified additional behaviors. Of these, 13 reported their cat’s burst pimple or insect bite. Common behaviors were headshaking, rubbing, pawing at their ears, and aggressively chewing. In some cases, bites or pimples triggered previously unseen itchiness, making the cat irritable. Twenty-four reported their cat had anxiety: overgrooming, itching, losing fur, hiding, freaking out, breathing quickly, sleeplessness, hissing and vocalising. Most reported these cats as having itchy skin, fleas, and bumps. Cats were commonly diagnosed with an ear infection, ringworm, acne, or kidney disease. Acne was diagnosed in cats with an allergy flare-up or overgrooming. Ear infections were diagnosed in itchy cats with mites or other parasites. Of the treatments mentioned, steroids were most frequently used, then anti-parasitics, including flea treatments and oral medication (steroids, antibiotics). Forty-six posts reported distress following poor outcomes after medication or additional vet consultations. SL provides veterinarians with unique insights. Verbatim comments highlight the detrimental effects of pruritus on pets and owner quality of life. This study demonstrates the need for veterinarians to communicate management and treatment options more effectively to relieve owner frustrations. Data analysis could be scaled up using machine learning for topic modeling.

Keywords: content analysis, feline, itch, pruritus, social media, thematic analysis, veterinary dermatology

Procedia PDF Downloads 186
1 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories

Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez

Abstract:

The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.

Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture

Procedia PDF Downloads 20