Search results for: cutting fluids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1027

Search results for: cutting fluids

7 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 101
6 Marketing and Business Intelligence and Their Impact on Products and Services through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors, thus refining marketing strategies and enhancing overall customer experiences. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. The analysis of customer data through BI unveils patterns and trends, informing product development, marketing campaigns, and customer service initiatives aimed at enriching experiences and knowledge. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence, business intelligence, and innovation in product and service offerings. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster innovation. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. The chosen method was justified for its efficacy in handling large sample sizes. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational innovation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Organizations equipped with cutting-edge BI tools are better positioned to devise strategies informed by precise insights into customer needs and behaviors. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. Companies leveraging BI demonstrate adeptness in identifying market opportunities guiding the development of novel products and services. The substantial impact of CEK-DI on PSI highlights the crucial role of customer experiences in driving organizational innovation. Firms actively integrating customer insights into their innovation processes are more likely to create offerings aligned with customer expectations, fostering higher levels of product and service innovation. Additionally, the positive and significant effect of MI on CEK-DI underscores the critical role of market insights in shaping innovative strategies. While the relationship between MI and PSI is positive, a slightly weaker significance level indicates a nuanced association, suggesting that while MI contributes to innovation, other factors may also influence the innovation landscape, warranting further exploration. In conclusion, the study underscores the essential role of intelligence capabilities, particularly artificial intelligence, in driving innovation, emphasizing the necessity for organizations to leverage market and customer intelligence for effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of innovation, influencing experiential customer knowledge and shaping organizational strategies and practices, ultimately enhancing overall customer experiences and organizational performance.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 33
5 Geomechanics Properties of Tuzluca (Eastern. Turkey) Bedded Rock Salt and Geotechnical Safety

Authors: Mehmet Salih Bayraktutan

Abstract:

Geomechanical properties of Rock Salt Deposits in Tuzluca Salt Mine Area (Eastern Turkey) are studied for modeling the operation- excavation strategy. The purpose of this research focused on calculating the critical value of span height- which will meet the safety requirements. The Mine Site Tuzluca Hills consist of alternating parallel bedding of Salt ( NaCl ) and Gypsum ( CaS04 + 2 H20) rocks. Rock Salt beds are more resistant than narrow Gypsum interlayers. Rock Salt beds formed almost 97 percent of the total height of the Hill. Therefore, the geotechnical safety of Galleries depends on the mechanical criteria of Rock Salt Cores. General deposition of Tuzluca Basin was finally completed by Tuzluca Evaporites, as for the uppermost stratigraphic unit. They are currently running mining operations performed by classic mechanical excavation, room and pillar method. Rooms and Pillars are currently experiencing an initial stage of fracturing in places. Geotechnical safety of the whole mining area evaluated by Rock Mass Rating (RMR), Rock Quality Designation (RQD) spacing of joints, and the interaction of groundwater and fracture system. In general, bedded rock salt Show large lateral deformation capacity (while deformation modulus stays in relative small values, here E= 9.86 GPa). In such litho-stratigraphic environments, creep is a critical mechanism in failure. Rock Salt creep rate in steady-state is greater than interbedding layers. Under long-lasted compressive stresses, creep may cause shear displacements, partly using bedding planes. Eventually, steady-state creep in time returns to accelerated stages. Uniaxial compression creep tests on specimens were performed to have an idea of rock salt strength. To give an idea, on Rock Salt cores, average axial strength and strain are found as 18 - 24 MPa and 0.43-0.45 %, respectively. Uniaxial Compressive strength of 26- 32 MPa, from bedded rock salt cores. Elastic modulus is comparatively low, but lateral deformation of the rock salt is high under the uniaxial compression stress state. Poisson ratio = 0.44, break load = 156 kN, cohesion c= 12.8 kg/cm2, specific gravity SG=2.17 gr/cm3. Fracture System; spacing of fractures, joints, faults, offsets are evaluated under acting geodynamic mechanism. Two sand beds, each 4-6 m thick, exist near to upper level and at the top of the evaporating sequence. They act as aquifers and keep infiltrated water on top for a long duration, which may result in the failure of roofs or pillars. Two major active seismic ( N30W and N70E ) striking Fault Planes and parallel fracture strands have seismically triggered moderate risk of structural deformation of rock salt bedding sequence. Earthquakes and Floods are two prevailing sources of geohazards in this region—the seismotectonic activity of the Mine Site based on the crossing framework of Kagizman Faults and Igdir Faults. Dominant Hazard Risk sources include; a) Weak mechanical properties of rock salt, gypsum, anhydrite beds-creep. b) Physical discontinuities cutting across the thick parallel layers of Evaporite Mass, c) Intercalated beds of weak cemented or loose sand, clayey sandy sediments. On the other hand, absorbing the effects of salt-gyps parallel bedded deposits on seismic wave amplitudes has a reducing effect on the Rock Mass.

Keywords: bedded rock salt, creep, failure mechanism, geotechnical safety

Procedia PDF Downloads 173
4 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 47
3 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 55
2 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 26
1 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 131