Search results for: multi sector intervention
7 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 486 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1375 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring
Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis
Abstract:
Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.Keywords: earth observation, monitoring, natural hazards, remote sensing
Procedia PDF Downloads 464 Revealing Celtic and Norse Mythological Depths through Dragon Age’s Tattoos and Narratives
Authors: Charles W. MacQuarrie, Rachel R. Tatro Duarte
Abstract:
This paper explores the representation of medieval identity within the world of games such as Dragon Age, Elden Ring, Hellblade: Senua’s sacrifice, fantasy role-playing games that draw effectively and problematically on Celtic and Norse mythologies. Focusing on tattoos, onomastics, and accent as visual and oral markers of status and ethnicity, this study analyzes how the game's interplay between mythology, character narratives, and visual storytelling enriches the themes and offers players an immersive, but sometimes baldly ahistorical, connection to ancient mythologies and contemporary digital storytelling. Dragon Age is a triple a game series, Hellblade Senua’s Sacrifice, and Elden Ring of gamers worldwide with its presentation of an idealized medieval world, inspired by the lore of Celtic and Norse mythologies. This paper sets out to explore the intricate relationships between tattoos, accent, and character narratives in the game, drawing parallels to themes,heroic figures and gods from Celtic and Norse mythologies. Tattoos as Mythic and Ethnic Markers: This study analyzes how tattoos in Dragon Age visually represent mythological elements from both Celtic and Norse cultures, serving as conduits of cultural identity and narratives. The nature of these tattoos reflects the slave, criminal, warrior associations made in classical and medieval literature, and some of the episodes concerning tattoos in the games have either close analogs or sources in literature. For example the elvish character Solas, in Dragon Age Inquisition, removes a slave tattoo from the face of a lower status elf in an episode that is reminiscent of Bridget removing the stigmata from Connallus in the Vita Prima of Saint Bridget Character Narratives: The paper examines how characters' personal narratives in the game parallel the archetypal journeys of Celtic heroes and Norse gods, with a focus on their relationships to mythic themes. In these games the Elves usually have Welsh or Irish accents, are close to nature, magically powerful, oppressed by apparently Anglo-Saxon humans and Norse dwarves, and these elves wear facial tattoos. The Welsh voices of fairies and demons is older than the reference in Shakespeare’s Merry Wives of Windsor or even the Anglo-Saxon Life of Saint Guthlac. The English speaking world, and the fantasy genre of literature and gaming, undoubtedly driven by Tolkien, see Elves as Welsh speakers, and as having Welsh accents when speaking English Comparative Analysis: A comparative approach is employed to reveal connections, adaptations, and unique interpretations of the motifs of tattoos and narrative themes in Dragon Age, compared to those found in Celtic and Norse mythologies. Methodology: The study uses a comparative approach to examine the similarities and distinctions between Celtic and Norse mythologies and their counterparts in video games. The analysis encompasses character studies, narrative exploration, visual symbolism, and the historical context of Celtic and Norse cultures. Mythic Visuals: This study showcases how tattoos, as visual symbols, encapsulate mythic narratives, beliefs, and cultural identity, echoing Celtic and Norse visual motifs. Archetypal Journeys: The paper analyzes how character arcs mirror the heroic journeys of Celtic and Norse mythological figures, allowing players to engage with mythic narratives on a personal level. Cultural Interplay: The study discusses how the game's portrayal of tattoos and narratives both preserves and reinterprets elements from Celtic and Norse mythologies, fostering a connection between ancient cultures and modern digital storytelling. Conclusion: By exploring the interconnectedness of tattoos and character narratives in Dragon Age, this paper reveals the game series' ability to act as a bridge between ancient mythologies and contemporary gaming. By drawing inspiration from Celtic heroes and Norse gods and translating them into digital narratives and visual motifs, Dragon Age offers players a multi-dimensional engagement with mythic themes and a unique lens through which to appreciate the enduring allure of these cultures.Keywords: comparative analysis, character narratives, video games and literature, tattoos, immersive storytelling, character development, mythological influences, Celtic mythology, Norset mythology
Procedia PDF Downloads 773 Recent Developments in E-waste Management in India
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay, Ananya Mukhopadhyay, Harendra Nath Bhattacharya
Abstract:
This study investigates the global issue of electronic waste (e-waste), focusing on its prevalence in India and other regions. E-waste has emerged as a significant worldwide problem, with India contributing a substantial share of annual e-waste generation. The primary sources of e-waste in India are computer equipment and mobile phones. Many developed nations utilize India as a dumping ground for their e-waste, with major contributions from the United States, China, Europe, Taiwan, South Korea, and Japan. The study identifies Maharashtra, Tamil Nadu, Mumbai, and Delhi as prominent contributors to India's e-waste crisis. This issue is contextualized within the broader framework of the United Nations' 2030 Agenda for Sustainable Development, which encompasses 17 Sustainable Development Goals (SDGs) and 169 associated targets to address poverty, environmental preservation, and universal prosperity. The study underscores the interconnectedness of e-waste management with several SDGs, including health, clean water, economic growth, sustainable cities, responsible consumption, and ocean conservation. Central Pollution Control Board (CPCB) data reveals that e-waste generation surpasses that of plastic waste, increasing annually at a rate of 31%. However, only 20% of electronic waste is recycled through organized and regulated methods in underdeveloped nations. In Europe, efficient e-waste management stands at just 35%. E-waste pollution poses serious threats to soil, groundwater, and public health due to toxic components such as mercury, lead, bromine, and arsenic. Long-term exposure to these toxins, notably arsenic in microchips, has been linked to severe health issues, including cancer, neurological damage, and skin disorders. Lead exposure, particularly concerning for children, can result in brain damage, kidney problems, and blood disorders. The study highlights the problematic transboundary movement of e-waste, with approximately 352,474 metric tonnes of electronic waste illegally shipped from Europe to developing nations annually, mainly to Africa, including Nigeria, Ghana, and Tanzania. Effective e-waste management, underpinned by appropriate infrastructure, regulations, and policies, offers opportunities for job creation and aligns with the objectives of the 2030 Agenda for SDGs, especially in the realms of decent work, economic growth, and responsible production and consumption. E-waste represents hazardous pollutants and valuable secondary resources, making it a focal point for anthropogenic resource exploitation. The United Nations estimates that e-waste holds potential secondary raw materials worth around 55 billion Euros. The study also identifies numerous challenges in e-waste management, encompassing the sheer volume of e-waste, child labor, inadequate legislation, insufficient infrastructure, health concerns, lack of incentive schemes, limited awareness, e-waste imports, high costs associated with recycling plant establishment, and more. To mitigate these issues, the study offers several solutions, such as providing tax incentives for scrap dealers, implementing reward and reprimand systems for e-waste management compliance, offering training on e-waste handling, promoting responsible e-waste disposal, advancing recycling technologies, regulating e-waste imports, and ensuring the safe disposal of domestic e-waste. A mechanism, Buy-Back programs, will compensate customers in cash when they deposit unwanted digital products. This E-waste could contain any portable electronic device, such as cell phones, computers, tablets, etc. Addressing the e-waste predicament necessitates a multi-faceted approach involving government regulations, industry initiatives, public awareness campaigns, and international cooperation to minimize environmental and health repercussions while harnessing the economic potential of recycling and responsible management.Keywords: e-waste management, sustainable development goal, e-waste disposal, recycling technology, buy-back policy
Procedia PDF Downloads 932 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk
Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg
Abstract:
Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions
Procedia PDF Downloads 1611 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 515