Search results for: global surgery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6341

Search results for: global surgery

11 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring

Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra

Abstract:

Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.

Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera

Procedia PDF Downloads 172
10 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia

Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure

Abstract:

Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.

Keywords: adaptation, cultural landscape, drought, extremes indices

Procedia PDF Downloads 28
9 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 172
8 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 70
7 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 9
6 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
5 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 489
4 Knowledge of the Doctors Regarding International Patient Safety Goal

Authors: Fatima Saeed, Abdullah Mudassar

Abstract:

Introduction: Patient safety remains a global priority in the ever-evolving healthcare landscape. At the forefront of this endeavor are the International Patient Safety Goals (IPSGs), a standardized framework designed to mitigate risks and elevate the quality of care. Doctors, positioned as primary caregivers, wield a pivotal role in upholding and adhering to IPSGs, underscoring the critical significance of their knowledge and understanding of these goals. This research embarks on a comprehensive exploration into the depth of Doctors ' comprehension of IPSGs, aiming to unearth potential gaps and provide insights for targeted educational interventions. Established by influential healthcare bodies, including the World Health Organization (WHO), IPSGs represent a universally applicable set of objectives spanning crucial domains such as medication safety, infection control, surgical site safety, and patient identification. Adherence to these goals has exhibited substantial reductions in adverse events, fostering an overall enhancement in the quality of care. This study operates on the fundamental premise that an informed Doctors workforce is indispensable for effectively implementing IPSGs. A nuanced understanding of these goals empowers Doctors to identify potential risks, advocate for necessary changes, and actively contribute to a safety-centric culture within healthcare institutions. Despite the acknowledged importance of IPSGs, there is a growing concern that nurses may need more knowledge to integrate these goals into their practice seamlessly. Methodology: A Comprehensive research methodology covering study design, setting, duration, sample size determination, sampling technique, and data analysis. It introduces the philosophical framework guiding the research and details material, methods, and the analysis framework. The descriptive quantitative cross-sectional study in teaching care hospitals utilized convenient sampling over six months. Data collection involved written informed consent and questionnaires, analyzed with SPSS version 23, presenting results graphically and descriptively. The chapter ensures a clear understanding of the study's design, execution, and analytical processes. Result: The survey results reveal a substantial distribution across hospitals, with 34.52% in MTIKTH and 65.48% in HMC MTI. There is a notable prevalence of patient safety incidents, emphasizing the significance of adherence to IPSGs. Positive trends are observed, including 77.0% affirming the "time-out" procedure, 81.6% acknowledging effective healthcare provider communication, and high recognition (82.7%) of the purpose of IPSGs to improve patient safety. While the survey reflects a good understanding of IPSGs, areas for improvement are identified, suggesting opportunities for targeted interventions. Discussion: The study underscores the need for tailored care approaches and highlights the bio-socio-cultural context of 'contagion,' suggesting areas for further research amid antimicrobial resistance. Shifting the focus to patient safety practices, the survey chapter provides a detailed overview of results, emphasizing workplace distribution, patient safety incidents, and positive reflections on IPSGs. The findings indicate a positive trend in patient safety practices with areas for improvement, emphasizing the ongoing need for reinforcing safety protocols and cultivating a safety-centric culture in healthcare. Conclusion: In summary, the survey indicates a positive trend in patient safety practices with a good understanding of IPSGs among participants. However, identifying areas for potential improvement suggests opportunities for targeted interventions to enhance patient safety further. Ongoing efforts to reinforce adherence to safety protocols, address identified gaps, and foster a safety culture will contribute to continuous improvements in patient care and outcomes.

Keywords: infection control, international patient safety, patient safety practices, proper medication

Procedia PDF Downloads 55
3 Influence of Oil Prices on the Central Caucasus State of Georgia

Authors: Charaia Vakhtang

Abstract:

Global oil prices are seeing new bottoms every day. The prices have already collapsed beneath the psychological verge of 30 USD. This tendency would be fully acceptable for the Georgian consumers, but there is one detail: two our neighboring countries (one friendly and one hostile) largely depend on resources of these hydrocarbons. Namely, the ratio of Azerbaijan in Georgia’s total FDI inflows in 2014 marked 20%. The ratio reached 40% in the January to September 2015. Azerbaijan is Georgia’s leading exports market. Namely, in 2014 Georgia’s exports to Azerbaijan constituted 544 million USD, i.e. 19% in Georgia’s total experts. In the January to November period of 2015, the ratio exceeded 11%. Moreover, Azerbaijan is Georgia’s strategic partner country as part of many regional projects that are designated for long-term perspectives. For example, the Baku-Tbilisi-Karsi railroad, the Black Sea terminal, preferential gas tariffs for Georgia and so on. The Russian economic contribution to the Georgian economy is also considerable, despite the losses the Russian hostile policy has inflicted to our country. Namely, Georgian emigrants are mainly employed in the Russian Federation and this category of Georgian citizens transfers considerable funds to Georgia every year. These transfers account for about 1 billion USD and consequently, these funds previously equalized to total FDI inflows. Moreover, despite the difficulties in the Russian market, Russia still remains a leader in terms of money transfers to Georgia. According to the last reports, money transfers from Russia to Georgia slipped by 276 million USD in 2015 compared to 2014 (-39%). At the same time, the total money transfers to Georgia in 2015 marked 1.08 billion USD, down 25% from 1.44 billion USD in 2014. This signifies the contraction in money transfers is by ¾ dependent on the Russian factor (in this case, contraction in oil prices and the Russian Ruble devaluation directly make negative impact on money transfers to Georgia). As to other countries, it is interesting that money transfers have also slipped from Italy (to 109 million USD from 121 million USD). Nevertheless, the country’s ratio in total money transfers to Georgia has increased to 10% from 8%. Money transfers to Georgia have increased by 22% (+18 million USD) from the USA. Money transfers have halved from Greece to 117 million USD from 205 million USD. As to Turkey, money transfers to Georgia from Turkey have increased by 1% to 69 million USD. Moreover, the problems with the national currencies of Russia and Azerbaijan, along with the above-mentioned developments, outline unfavorable perspectives for the Georgian economy. The depreciation of the national currencies of Azerbaijan and Russia is expected to bring unfavorable results for the Georgian economy. Even more so, the statement released by the Russian Finance Ministry on expected default is in direct relation to the welfare of the whole region and these tendencies will make direct and indirect negative impacts on Georgia’s economic indicators. Amid the economic slowdown in Armenia, Turkey and Ukraine, Georgia should try to enhance economic ties with comparatively stronger and flexible economies such as EU and USA. In other case, the Georgian economy will enter serious turbulent zone. We should make maximum benefit from the EU association agreement. It should be noted that the Russian economy slowdown that causes both regretful and happy moods in Georgia, will make negative impact on the Georgian economy. The same forecasts are made in relation to Azerbaijan. However, Georgia has many partner countries. Enhancement and development of the economic relations with these countries may maximally alleviate negative impacts from the declining economies. First of all, the EU association agreement should be mentioned as a main source for Georgia’s economic stabilization. It is the Georgian government‘s responsibility to successfully fulfill the EU association agreement requirements. In any case the imports must be replaced by domestic products and the exports should be stimulated through government support programs. The Authorities should ensure drawing more foreign investments and money resources, accumulating more tourism revenues and reducing external debts, budget expenditures should be balanced and the National Bank should carry out strict monetary policy. Moreover, the Government should develop a long-term state economic policy and carry out this policy at various Ministries. It is also of crucial importance to carry out constitutive policy and promote perspective directions on the domestic level.

Keywords: oil prices, economic growth, foreign direct investments, international trade

Procedia PDF Downloads 270
2 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes

Authors: Nahashon Mwirigi

Abstract:

The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.

Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling

Procedia PDF Downloads 14
1 Recent Developments in E-waste Management in India

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay, Ananya Mukhopadhyay, Harendra Nath Bhattacharya

Abstract:

This study investigates the global issue of electronic waste (e-waste), focusing on its prevalence in India and other regions. E-waste has emerged as a significant worldwide problem, with India contributing a substantial share of annual e-waste generation. The primary sources of e-waste in India are computer equipment and mobile phones. Many developed nations utilize India as a dumping ground for their e-waste, with major contributions from the United States, China, Europe, Taiwan, South Korea, and Japan. The study identifies Maharashtra, Tamil Nadu, Mumbai, and Delhi as prominent contributors to India's e-waste crisis. This issue is contextualized within the broader framework of the United Nations' 2030 Agenda for Sustainable Development, which encompasses 17 Sustainable Development Goals (SDGs) and 169 associated targets to address poverty, environmental preservation, and universal prosperity. The study underscores the interconnectedness of e-waste management with several SDGs, including health, clean water, economic growth, sustainable cities, responsible consumption, and ocean conservation. Central Pollution Control Board (CPCB) data reveals that e-waste generation surpasses that of plastic waste, increasing annually at a rate of 31%. However, only 20% of electronic waste is recycled through organized and regulated methods in underdeveloped nations. In Europe, efficient e-waste management stands at just 35%. E-waste pollution poses serious threats to soil, groundwater, and public health due to toxic components such as mercury, lead, bromine, and arsenic. Long-term exposure to these toxins, notably arsenic in microchips, has been linked to severe health issues, including cancer, neurological damage, and skin disorders. Lead exposure, particularly concerning for children, can result in brain damage, kidney problems, and blood disorders. The study highlights the problematic transboundary movement of e-waste, with approximately 352,474 metric tonnes of electronic waste illegally shipped from Europe to developing nations annually, mainly to Africa, including Nigeria, Ghana, and Tanzania. Effective e-waste management, underpinned by appropriate infrastructure, regulations, and policies, offers opportunities for job creation and aligns with the objectives of the 2030 Agenda for SDGs, especially in the realms of decent work, economic growth, and responsible production and consumption. E-waste represents hazardous pollutants and valuable secondary resources, making it a focal point for anthropogenic resource exploitation. The United Nations estimates that e-waste holds potential secondary raw materials worth around 55 billion Euros. The study also identifies numerous challenges in e-waste management, encompassing the sheer volume of e-waste, child labor, inadequate legislation, insufficient infrastructure, health concerns, lack of incentive schemes, limited awareness, e-waste imports, high costs associated with recycling plant establishment, and more. To mitigate these issues, the study offers several solutions, such as providing tax incentives for scrap dealers, implementing reward and reprimand systems for e-waste management compliance, offering training on e-waste handling, promoting responsible e-waste disposal, advancing recycling technologies, regulating e-waste imports, and ensuring the safe disposal of domestic e-waste. A mechanism, Buy-Back programs, will compensate customers in cash when they deposit unwanted digital products. This E-waste could contain any portable electronic device, such as cell phones, computers, tablets, etc. Addressing the e-waste predicament necessitates a multi-faceted approach involving government regulations, industry initiatives, public awareness campaigns, and international cooperation to minimize environmental and health repercussions while harnessing the economic potential of recycling and responsible management.

Keywords: e-waste management, sustainable development goal, e-waste disposal, recycling technology, buy-back policy

Procedia PDF Downloads 88