Search results for: unresponsive bystander
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: unresponsive bystander

3 The Design of a Phase I/II Trial of Neoadjuvant RT with Interdigitated Multiple Fractions of Lattice RT for Large High-grade Soft-Tissue Sarcoma

Authors: Georges F. Hatoum, Thomas H. Temple, Silvio Garcia, Xiaodong Wu

Abstract:

Soft Tissue Sarcomas (STS) represent a diverse group of malignancies with heterogeneous clinical and pathological features. The treatment of extremity STS aims to achieve optimal local tumor control, improved survival, and preservation of limb function. The National Comprehensive Cancer Network guidelines, based on the cumulated clinical data, recommend radiation therapy (RT) in conjunction with limb-sparing surgery for large, high-grade STS measuring greater than 5 cm in size. Such treatment strategy can offer a cure for patients. However, when recurrence occurs (in nearly half of patients), the prognosis is poor, with a median survival of 12 to 15 months and with only palliative treatment options available. The spatially-fractionated-radiotherapy (SFRT), with a long history of treating bulky tumors as a non-mainstream technique, has gained new attention in recent years due to its unconventional therapeutic effects, such as bystander/abscopal effects. Combining single fraction of GRID, the original form of SFRT, with conventional RT was shown to have marginally increased the rate of pathological necrosis, which has been recognized to have a positive correlation to overall survival. In an effort to consistently increase the pathological necrosis rate over 90%, multiple fractions of Lattice RT (LRT), a newer form of 3D SFRT, interdigitated with the standard RT as neoadjuvant therapy was conducted in a preliminary clinical setting. With favorable results of over 95% of necrosis rate in a small cohort of patients, a Phase I/II clinical study was proposed to exam the safety and feasibility of this new strategy. Herein the design of the clinical study is presented. In this single-arm, two-stage phase I/II clinical trial, the primary objectives are >80% of the patients achieving >90% tumor necrosis and to evaluation the toxicity; the secondary objectives are to evaluate the local control, disease free survival and overall survival (OS), as well as the correlation between clinical response and the relevant biomarkers. The study plans to accrue patients over a span of two years. All patient will be treated with the new neoadjuvant RT regimen, in which one of every five fractions of conventional RT is replaced by a LRT fraction with vertices receiving dose ≥10Gy while keeping the tumor periphery at or close to 2 Gy per fraction. Surgical removal of the tumor is planned to occur 6 to 8 weeks following the completion of radiation therapy. The study will employ a Pocock-style early stopping boundary to ensure patient safety. The patients will be followed and monitored for a period of five years. Despite much effort, the rarity of the disease has resulted in limited novel therapeutic breakthroughs. Although a higher rate of treatment-induced tumor necrosis has been associated with improved OS, with the current techniques, only 20% of patients with large, high-grade tumors achieve a tumor necrosis rate exceeding 50%. If this new neoadjuvant strategy is proven effective, an appreciable improvement in clinical outcome without added toxicity can be anticipated. Due to the rarity of the disease, it is hoped that such study could be orchestrated in a multi-institutional setting.

Keywords: lattice RT, necrosis, SFRT, soft tissue sarcoma

Procedia PDF Downloads 60
2 Recurrent Torsades de Pointes Post Direct Current Cardioversion for Atrial Fibrillation with Rapid Ventricular Response

Authors: Taikchan Lildar, Ayesha Samad, Suraj Sookhu

Abstract:

Atrial fibrillation with rapid ventricular response results in the loss of atrial kick and shortened ventricular filling time, which often leads to decompensated heart failure. Pharmacologic rhythm control is the treatment of choice, and patients frequently benefit from the restoration of sinus rhythm. When pharmacologic treatment is unsuccessful or a patient declines hemodynamically, direct cardioversion is the treatment of choice. Torsades de pointes or “twisting of the points'' in French, is a rare but under-appreciated risk of cardioversion therapy and accounts for a significant number of sudden cardiac death each year. A 61-year-old female with no significant past medical history presented to the Emergency Department with worsening dyspnea. An electrocardiogram showed atrial fibrillation with rapid ventricular response, and a chest X-ray was significant for bilateral pulmonary vascular congestion. Full-dose anticoagulation and diuresis were initiated with moderate improvement in symptoms. A transthoracic echocardiogram revealed biventricular systolic dysfunction with a left ventricular ejection fraction of 30%. After consultation with an electrophysiologist, the consensus was to proceed with the restoration of sinus rhythm, which would likely improve the patient’s heart failure symptoms and possibly the ejection fraction. A transesophageal echocardiogram was negative for left atrial appendage thrombus; the patient was treated with a loading dose of amiodarone and underwent successful direct current cardioversion with 200 Joules. The patient was placed on telemetry monitoring for 24 hours and was noted to have frequent premature ventricular contractions with subsequent degeneration to torsades de pointes. The patient was found unresponsive and pulseless; cardiopulmonary resuscitation was initiated with cardioversion, and return of spontaneous circulation was achieved after four minutes to normal sinus rhythm. Post-cardiac arrest electrocardiogram showed sinus bradycardia with heart-rate corrected QT interval of 592 milliseconds. The patient continued to have frequent premature ventricular contractions and required two additional cardioversions to achieve a return of spontaneous circulation with intravenous magnesium and lidocaine. An automatic implantable cardioverter-defibrillator was subsequently implanted for secondary prevention of sudden cardiac death. The backup pacing rate of the automatic implantable cardioverter-defibrillator was set higher than usual in an attempt to prevent premature ventricular contractions-induced torsades de pointes. The patient did not have any further ventricular arrhythmias after implantation of the automatic implantable cardioverter-defibrillator. Overdrive pacing is a method utilized to treat premature ventricular contractions-induced torsades de pointes by preventing a patient’s susceptibility to R on T-wave-induced ventricular arrhythmias. Pacing at a rate of 90 beats per minute succeeded in controlling the arrhythmia without the need for traumatic cardiac defibrillation. In our patient, conversion of atrial fibrillation with rapid ventricular response to normal sinus rhythm resulted in a slower heart rate and an increased probability of premature ventricular contraction occurring on the T-wave and ensuing ventricular arrhythmia. This case highlights direct current cardioversion for atrial fibrillation with rapid ventricular response resulting in persistent ventricular arrhythmia requiring an automatic implantable cardioverter-defibrillator placement with overdrive pacing to prevent a recurrence.

Keywords: refractory atrial fibrillation, atrial fibrillation, overdrive pacing, torsades de pointes

Procedia PDF Downloads 153
1 The Procedural Sedation Checklist Manifesto, Emergency Department, Jersey General Hospital

Authors: Jerome Dalphinis, Vishal Patel

Abstract:

The Bailiwick of Jersey is an island British crown dependency situated off the coast of France. Jersey General Hospital’s emergency department sees approximately 40,000 patients a year. It’s outside the NHS, with secondary care being free at the point of care. Sedation is a continuum which extends from a normal conscious level to being fully unresponsive. Procedural sedation produces a minimally depressed level of consciousness in which the patient retains the ability to maintain an airway, and they respond appropriately to physical stimulation. The goals of it are to improve patient comfort and tolerance of the procedure and alleviate associated anxiety. Indications can be stratified by acuity, emergency (cardioversion for life-threatening dysrhythmia), and urgency (joint reduction). In the emergency department, this is most often achieved using a combination of opioids and benzodiazepines. Some departments also use ketamine to produce dissociative sedation, a cataleptic state of profound analgesia and amnesia. The response to pharmacological agents is highly individual, and the drugs used occasionally have unpredictable pharmacokinetics and pharmacodynamics, which can always result in progression between levels of sedation irrespective of the intention. Therefore, practitioners must be able to ‘rescue’ patients from deeper sedation. These practitioners need to be senior clinicians with advanced airway skills (AAS) training. It can lead to adverse effects such as dangerous hypoxia and unintended loss of consciousness if incorrectly undertaken; studies by the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) have reported avoidable deaths. The Royal College of Emergency Medicine, UK (RCEM) released an updated ‘Safe Sedation of Adults in the Emergency Department’ guidance in 2017 detailing a series of standards for staff competencies, and the required environment and equipment, which are required for each target sedation depth. The emergency department in Jersey undertook audit research in 2018 to assess their current practice. It showed gaps in clinical competency, the need for uniform care, and improved documentation. This spurred the development of a checklist incorporating the above RCEM standards, including contraindication for procedural sedation and difficult airway assessment. This was approved following discussion with the relevant heads of departments and the patient safety directorates. Following this, a second audit research was carried out in 2019 with 17 completed checklists (11 relocation of joints, 6 cardioversions). Data was obtained from looking at the controlled resuscitation drugs book containing documented use of ketamine, alfentanil, and fentanyl. TrakCare, which is the patient electronic record system, was then referenced to obtain further information. The results showed dramatic improvement compared to 2018, and they have been subdivided into six categories; pre-procedure assessment recording of significant medical history and ASA grade (2 fold increase), informed consent (100% documentation), pre-oxygenation (88%), staff (90% were AAS practitioners) and monitoring (92% use of non-invasive blood pressure, pulse oximetry, capnography, and cardiac rhythm monitoring) during procedure, and discharge instructions including the documented return of normal vitals and consciousness (82%). This procedural sedation checklist is a safe intervention that identifies pertinent information about the patient and provides a standardised checklist for the delivery of gold standard of care.

Keywords: advanced airway skills, checklist, procedural sedation, resuscitation

Procedia PDF Downloads 118