Search results for: interferometric
3 Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)
Authors: Rima Zakzouk, Yasushi Shimada, Yuan Zhou, Yasunori Sumi, Junji Tagami
Abstract:
Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment.Keywords: image analysis, optical coherence tomography, phosphoric acid etching, self-etch adhesives
Procedia PDF Downloads 2212 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed
Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka
Abstract:
Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.Keywords: coastal mangroves, hydrologic model, land cover change, Philippines
Procedia PDF Downloads 1231 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 163