Search results for: imputation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36

Search results for: imputation

6 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 170
5 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia

Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas

Abstract:

The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.

Keywords: time series, global solar irradiance, imputed data, energy complementarity

Procedia PDF Downloads 71
4 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.

Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model

Procedia PDF Downloads 149
3 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 186
2 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116
1 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42