Search results for: Jeff C. Smithers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Jeff C. Smithers

3 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 68
2 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
1 Amyloid Angiopathy and Golf: Two Opposite but Close Worlds

Authors: Andrea Bertocchi, Alessio Barnaba Di Fonzo, Davide Talarico, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 89 years old male (180cm/85kg) retired notary former golfer with no past medical history. He describes a progressive ideomotor slowdown for 14 months. The disorder is characterized by short-term memory deficits and, for some months, also by unstable walking with a broad base with skidding and risk of falling at directional changes and urinary urgency. There were also episodes of aggression towards his wife and staff. At the time, the patient takes no prescribed medications. He has difficulty eating, dressing, and some problems with personal hygiene. In the initial visit, the patient was alert, cooperating, and performed simple tasks; however, he has a hearing impairment, slowed spontaneous speech, and amnestic deficit to the short story. Ideomotor apraxia is not present. He scored 20 points in the MMSE. From a motor function, he has deficits using Medical Research Council (MRC) 3-/5 in bilateral lower limbs and requires maximum assistance from sit to stand with existing premature fatigue. He’s unable to walk for about 1 month. Tremors and hypertonia are absent. BERG was unable to be administered, and BARTHEL was obtained 45/100. An Amyloid Angiopathy is suspected and then confirmed at the neurological examination. Therehabilitation objectives were the recovery of mobility and reinforcement of the UE/LE, especially legs, for recovery of standing and walking. The cognitive aspect was also an essential factor for the patient's recovery. The literature doesn’t demonstrate any particular studies regarding motor and cognitive rehabilitation on this pathology. Failing to manage his attention on exercise and tending to be disinterested and falling asleep constantly, we used golf-specific gestures to stimulate his mind to work and get results because the patient has memory recall of golf related movement. We worked for 4 months with a frequency of 3 sessions per week. Every session lasted for 45 minutes. After 4 months of work, the patient walked independently with the use of a stick for about 120 meters without stopping. MRC 4/5 AI bilaterally andpostural steps performed independently with supervision. BERG 36/56. BARTHEL 65/100. 6 Minutes Walking Test (6MWT), at the beginning, it wasn’t measurable, now, he performs 151,5m with Numeric Rating Scale 4 at the beginning and 7 at the end. Cognitively, he no longer has episodes of aggression, although the short-term memory and concentration deficit remains. Amyloid Angiopathy is a mix of motor and cognitive disorder. It is worth the thought that cerebral amyloid angiopathy manifests with functional deficits due to strokes and bleedings and, as such, has an important rehabilitation indication, as classical stroke is not associated with amyloidosis. Exploring the motor patterns learned at a young age and remained in the implicit and explicit memory of the patient allowed us to set up effective work and to obtain significant results in the short-middle term. Surely many studies will still be done regarding this pathology and its rehabilitation, but the importance of the cognitive sphere applied to the motor sphere could represent an important starting point.

Keywords: amyloid angiopathy, cognitive rehabilitation, golf, motor disorder

Procedia PDF Downloads 137