Search results for: GHGs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36

Search results for: GHGs

6 The Growth Role of Natural Gas Consumption for Developing Countries

Authors: Tae Young Jin, Jin Soo Kim

Abstract:

Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: developing countries, economic growth, natural gas consumption, panel data analysis

Procedia PDF Downloads 234
5 Is Materiality Determination the Key to Integrating Corporate Sustainability and Maximising Value?

Authors: Ruth Hegarty, Noel Connaughton

Abstract:

Sustainability reporting has become a priority for many global multinational companies. This is associated with ever-increasing expectations from key stakeholders for companies to be transparent about their strategies, activities and management with regard to sustainability issues. The Global Reporting Initiative (GRI) encourages reporters to only provide information on the issues that are really critical in order to achieve the organisation’s goals for sustainability and manage its impact on environment and society. A key challenge for most reporting organisations is how to identify relevant issues for sustainability reporting and prioritise those material issues in accordance with company and stakeholder needs. A recent study indicates that most of the largest companies listed on the world’s stock exchanges are failing to provide data on key sustainability indicators such as employee turnover, energy, greenhouse gas emissions (GHGs), injury rate, pay equity, waste and water. This paper takes an indepth look at the approaches used by a select number of international sustainability leader corporates to identify key sustainability issues. The research methodology involves performing a detailed analysis of the sustainability report content of up to 50 companies listed on the 2014 Dow Jones Sustainability Indices (DJSI). The most recent sustainability report content found on the GRI Sustainability Disclosure Database is then compared with 91 GRI Specific Standard Disclosures and a small number of GRI Standard Disclosures. Preliminary research indicates significant gaps in the information disclosed in corporate sustainability reports versus the indicator content specified in the GRI Content Index. The following outlines some of the key findings to date: Most companies made a partial disclosure with regard to the Economic indicators of climate change risks and infrastructure investments, but did not focus on the associated negative impacts. The top Environmental indicators disclosed were energy consumption and reductions, GHG emissions, water withdrawals, waste and compliance. The lowest rates of indicator disclosure included biodiversity, water discharge, mitigation of environmental impacts of products and services, transport, environmental investments, screening of new suppliers and supply chain impacts. The top Social indicators disclosed were new employee hires, rates of injury, freedom of association in operations, child labour and forced labour. Lesser disclosure rates were reported for employee training, composition of governance bodies and employees, political contributions, corruption and fines for non-compliance. The reporting on most other Social indicators was found to be poor. In addition, most companies give only a brief explanation on how material issues are defined, identified and ranked. Data on the identification of key stakeholders and the degree and nature of engagement for determining issues and their weightings is also lacking. Generally, little to no data is provided on the algorithms used to score an issue. Research indicates that most companies lack a rigorous and thorough methodology to systematically determine the material issues of sustainability reporting in accordance with company and stakeholder needs.

Keywords: identification of key stakeholders, material issues, sustainability reporting, transparency

Procedia PDF Downloads 306
4 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation

Authors: Waqas Ahmed Khan, Faheem Khokhaar

Abstract:

Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.

Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change

Procedia PDF Downloads 212
3 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 74
2 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 188
1 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate

Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi

Abstract:

Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.

Keywords: biodegradable, healthy environment, integrated solid waste management, municipal

Procedia PDF Downloads 14