Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32
Search results for: Edson Ephraim Sanga
2 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 201 Missed Opportunities for Immunization of under Five Children in Calabar South County Cros River State, Nigeria, the Way Forward
Authors: Celestine Odigwe, Epoke Lincoln, Rhoda-Dara Ephraim
Abstract:
Background; Immunization against the childhood killer diseases is the cardinal strategy for the prevention of these diseases all over the world in under five children, these diseases include; Tuberculosis, Measles, Polio, Tetanus, Diphthria, Pertusis, Yellow Fever, Hepatitis B, Haemophilus Influenza type B. 6.9 million children die before their fifth birthday , 80% of the worlds death in children under 5 years occur in 25 countries most in Africa and Asia and 2 million children can be saved each year with routine immunization Therefore failure to achieve total immunization coverage puts several children at risk. Aim; The aim of the study was to ascertain the prevalence, Investigate the various reasons and causes why several under five children in a suburb of calabar municipal county fail to get the required immunizations as at and when due and possibly the consequences, so that efforts can be re-directed towards the solution of the problems so identified. Methods; the study was a community based cross sectional study. The respondents were the mothers/guardians of the sampled children who were all aged 0-59 months. To be eligible for recruitment into the study, the parent or guardian was required to give an informed consent, reside within the Calabar South County with his/her children aged 0-59 months. We calculated our sample size using the Leslie-Kish formula and we used a two-staged sampling method, first to ballot for the wards to be involved and then to select four of the most populated ones in the wards chosen. Data collection was by interviewer administered structured questionnaire (Appendix I), Data collected was entered and analyzed using Statistical Package for the Social Sciences (SPSS) Version 20. Percentages were calculated and represented using charts and tables Results; The number of children sampled was 159. We found that 150 were fully immunized and 9 were not, the prevalence of missed opportunity was 32% from the study. The reasons for missed opportunities were varied, ranging from false contraindications, logistical problems resulting in very poor access roads to health facilities and poor organization of health centers together with negative health worker attitudes. Some of the consequences of these missed opportunities were increased susceptibility to vaccine preventable diseases, resurgence of the above diseases and increased morbidity and mortality of children aged less than 5 years. Conclusion; We found that ignorance on the part of both parents/guardians and health care staff together with infrastructural inadequacies in the county such as- roads, poor electric power supply for storage of vaccines were hugely responsible for most missed opportunities for immunization. The details of these and suggestions for improvement and the way forward are discussed.Keywords: missed opportunity, immunization, under five, Calabar south
Procedia PDF Downloads 326