Search results for: Amrit Goswami
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36

Search results for: Amrit Goswami

6 Molecular Implication of Interaction of Human Enteric Pathogens with Phylloplane of Tomato

Authors: Shilpi, Indu Gaur, Neha Bhadauria, Susmita Goswami, Prabir K. Paul

Abstract:

Cultivation and consumption of organically grown fruits and vegetables have increased by several folds. However, the presence of Human Enteric Pathogens on the surface of organically grown vegetables causing Gastro-intestinal diseases, are most likely due to contaminated water and fecal matter of farm animals. Human Enteric Pathogens are adapted to colonize the human gut, and also colonize plant surface. Microbes on plant surface communicate with each other to establish quorum sensing. The cross talk study is important because the enteric pathogens on phylloplane have been reported to mask the beneficial resident bacteria of plant. In the present study, HEPs and bacterial colonizers were identified using 16s rRNA sequencing. Microbial colonization patterns after interaction between Human Enteric Pathogens and natural bacterial residents on tomato phylloplane was studied. Tomato plants raised under aseptic conditions were inoculated with a mixture of Serratia fonticola and Klebsiella pneumoniae. The molecules involved in cross-talk between Human Enteric Pathogens and regular bacterial colonizers were isolated and identified using molecular techniques and HPLC. The colonization pattern was studied by leaf imprint method after 48 hours of incubation. The associated protein-protein interaction in the host cytoplasm was studied by use of crosslinkers. From treated leaves the crosstalk molecules and interaction proteins were separated on 1D SDS-PAGE and analyzed by MALDI-TOF-TOF analysis. The study is critical in understanding the molecular aspects of HEP’s adaption to phylloplane. The study revealed human enteric pathogens aggressively interact among themselves and resident bacteria. HEPs induced establishment of a signaling cascade through protein-protein interaction in the host cytoplasm. The study revealed that the adaptation of Human Enteric Pathogens on phylloplane of Solanum lycopersicum involves the establishment of complex molecular interaction between the microbe and the host including microbe-microbe interaction leading to an establishment of quorum sensing. The outcome will help in minimizing the HEP load on fresh farm produce, thereby curtailing incidences of food-borne diseases.

Keywords: crosslinkers, human enteric pathogens (HEPs), phylloplane, quorum sensing

Procedia PDF Downloads 279
5 Physiological Insight into an Age Old Biocontrol Practice in Banana Cultivation

Authors: Susmita Goswami, Joyeeta Mitra, Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Prabir K. Paul

Abstract:

'Malbhog’, an indigenous banana variety, much prized for its flavour and delicacy suffers production losses due to Fusarium oxysporum f.sp. cubense. The pathogen enters young plants through feeder roots causing wilting of plants ultimately leading to death of plants. The pathogen spreads rapidly to other plants in the field. In eastern part of India, this variety escapes the onslaught of the pathogen when either co-cultivated or rotated with Amorphophallus campanulatus (yam). The present study provides an insight into the physiological aspect of the biocontrol by yam. In vitro application of sterile aqueous extract of yam tuber (100gm/100ml distilled water and its 1:10 and 1:100 dilutions) were mixed with PDA media which was substantially inoculated with spores of Fusarium oxysporum f.sp. cubense. The extract could significantly reduce germination of pathogen spores. Banana variety susceptible to Fusarium sp was raised in soil rite under aseptic conditions. Spores of the pathogen (106 spores/ml) were inoculated into the soil rite. The plants were spread with aqueous extract of yam. The control plants were treated with sterilized distilled water. The activity of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POX) were estimated in leaves and roots at interval of 24 hours for 5 days after treatment. The incidence of wilt disease was recorded after two weeks. The results demonstrated that yam extract could induce significant activity of PAL, PPO and POX along with accumulation of phenols in both roots and leaves of banana plants. However, significantly high activity of enzymes and phenol accumulation was observed in roots. The disease incidence was significantly low in yam treated plants. The results clearly demonstrated the control of the pathogen due to induction of defense mechanism in the host by the extract. The observed control of the pathogen in the field could possibly be due to induction of such defense responses in host by exudates leached into the soil from yam tubers. Yam extract could be a potential source of environment-friendly biocide against Panama wilt of banana.

Keywords: Amorphophallus campanulatus, banana, Fusarium oxysporum f.sp. cubense, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POX)

Procedia PDF Downloads 260
4 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 203
3 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 133
2 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum

Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul

Abstract:

The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.

Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum

Procedia PDF Downloads 228
1 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127