Search results for: Bayesian inference
266 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates
Authors: Takashi Mitsuishi
Abstract:
Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation
Procedia PDF Downloads 363265 Ensemble Sampler For Infinite-Dimensional Inverse Problems
Authors: Jeremie Coullon, Robert J. Webber
Abstract:
We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction
Procedia PDF Downloads 154264 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 227263 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 259262 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 324261 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise
Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry
Abstract:
Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival
Procedia PDF Downloads 303260 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems
Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick
Abstract:
This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms
Procedia PDF Downloads 231259 Currency Exchange Rate Forecasts Using Quantile Regression
Authors: Yuzhi Cai
Abstract:
In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling
Procedia PDF Downloads 256258 The Effectiveness of Foreign Aid in Different Political Regimes of Pakistan
Authors: Umar Hayat, Shahid Ali, Lala Rukh
Abstract:
Foreign aid is one of the critical variables that promote economic growth. This paper is an attempt to examine the long-run relationship between foreign aid and economic growth for Pakistan over the period of 1972 to 2021. This study uses Johnson's co-integration technique to investigate the long-run relationship among the variables in the model. For short-run dynamics, we utilized the Error Correction Mechanism (ECM). The results strongly support the conventional view about aid-led growth. The analysis of the impact of aid on growth both at the micro and the macro levels generally gives different results. The result shows that in the short run inference of foreign aid under the nondemocratic form of government is significant negatively, while foreign aid does not affect economic growth in the case of democratic government.Keywords: foreign aid, economic growth, political regimes, developing economy
Procedia PDF Downloads 44257 Game-Based Learning in a Higher Education Course: A Case Study with Minecraft Education Edition
Authors: Salvador Antelmo Casanova Valencia
Abstract:
This study documents the use of the Minecraft Education Edition application to explore immersive game-based learning environments. We analyze the contributions of fourth-year university students who are pursuing a degree in Administrative Computing at the Universidad Michoacana de San Nicolas de Hidalgo. In this study, descriptive data and statistical inference are detailed using a quasi-experimental design using the Wilcoxon test. The instruments will provide data validation. Game-based learning in immersive environments necessarily implies greater student participation and commitment, resulting in the study, motivation, and significant improvements, promoting cooperation and autonomous learning.Keywords: game-based learning, gamification, higher education, Minecraft
Procedia PDF Downloads 163256 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 105255 Investigating the Behavior of Individual Business Taxpayers: Behavioral Economics Approach
Authors: Yeganeh Mousavi Jahromi, Sahar Dehghan
Abstract:
In Direct Tax Act, penalties and incentives are two strategies for realization of the expected tax revenues. In this study, the interaction between individual businesses' taxpayers' behaviors and National Tax Administration is investigated by using prospect theory which is based on behavioral economics approach. For this purpose, the structure of the tax compliance of the mentioned taxpayers is evaluated via the changes in penalty and incentive rates. In this way, a special questionnaire regarding the items of individual businesses sector of Direct Tax Act was designed for tax compliance evaluation, and the results were obtained using Bayesian Hierarchical method. The results indicate that the investigated individual business taxpayers, at all income levels, were more sensitive toward incentive rates so that this result can be useful for tax policymakers.Keywords: behavioral economics, prospect theory, tax compliance, penalties, incentives
Procedia PDF Downloads 68254 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve
Authors: Roger L. Goodwin
Abstract:
This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve
Procedia PDF Downloads 475253 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 460252 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 107251 Justitium: Endangered Species and Humanitarian Interventions in the Anthropocene Era
Authors: Eleni Panagiotarakou
Abstract:
This paper argues that humans have a collective moral responsibility to help wild animals during the Anthropocene era. Seen from the perspective of deontic logic, this moral responsibility did not exist in the Holocene era (ca. 11,700 BC-1945 AD) on account of humanity’s limited impact on the natural environment. By contrast in the Anthropocene, human activities are causing significant disturbances to planetary ecosystems and by inference to wildlife communities. Under these circumstances controversial and deeply regrettable interventional methods such as Managed Relocations (MR) and synthetic biology should be expanded and become policy measures despite their known and unknown risks. The main rationale for the above stems from the fact that traditional management strategies are simply insufficient in the Anthropocene. If the same anthropogenic activities continue unabated they risk triggering a sixth mass species extinction.Keywords: anthropocene, humanitarian interventions, managed relocations, species extinctions, synthetic biology
Procedia PDF Downloads 249250 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network
Authors: Powei Happiness Kerry
Abstract:
Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.Keywords: Internet of Things, radiofrequency, electromagnetic radiation, information and communications technology, ICT, 5G
Procedia PDF Downloads 134249 RAD-Seq Data Reveals Evidence of Local Adaptation between Upstream and Downstream Populations of Australian Glass Shrimp
Authors: Sharmeen Rahman, Daniel Schmidt, Jane Hughes
Abstract:
Paratya australiensis Kemp (Decapoda: Atyidae) is a widely distributed indigenous freshwater shrimp, highly abundant in eastern Australia. This species has been considered as a model stream organism to study genetics, dispersal, biology, behaviour and evolution in Atyids. Paratya has a filter feeding and scavenging habit which plays a significant role in the formation of lotic community structure. It has been shown to reduce periphyton and sediment from hard substrates of coastal streams and hence acts as a strongly-interacting ecosystem macroconsumer. Besides, Paratya is one of the major food sources for stream dwelling fishes. Paratya australiensis is a cryptic species complex consisting of 9 highly divergent mitochondrial DNA lineages. Among them, one lineage has been observed to favour upstream sites at higher altitudes, with cooler water temperatures. This study aims to identify local adaptation in upstream and downstream populations of this lineage in three streams in the Conondale Range, North-eastern Brisbane, Queensland, Australia. Two populations (up and down stream) from each stream have been chosen to test for local adaptation, and a parallel pattern of adaptation is expected across all streams. Six populations each consisting of 24 individuals were sequenced using the Restriction Site Associated DNA-seq (RAD-seq) technique. Genetic markers (SNPs) were developed using double digest RAD sequencing (ddRAD-seq). These were used for de novo assembly of Paratya genome. De novo assembly was done using the STACKs program and produced 56, 344 loci for 47 individuals from one stream. Among these individuals, 39 individuals shared 5819 loci, and these markers are being used to test for local adaptation using Fst outlier tests (Arlequin) and Bayesian analysis (BayeScan) between up and downstream populations. Fst outlier test detected 27 loci likely to be under selection and the Bayesian analysis also detected 27 loci as under selection. Among these 27 loci, 3 loci showed evidence of selection at a significance level using BayeScan program. On the other hand, up and downstream populations are strongly diverged at neutral loci with a Fst =0.37. Similar analysis will be done with all six populations to determine if there is a parallel pattern of adaptation across all streams. Furthermore, multi-locus among population covariance analysis will be done to identify potential markers under selection as well as to compare single locus versus multi-locus approaches for detecting local adaptation. Adaptive genes identified in this study can be used for future studies to design primers and test for adaptation in related crustacean species.Keywords: Paratya australiensis, rainforest streams, selection, single nucleotide polymorphism (SNPs)
Procedia PDF Downloads 255248 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity
Procedia PDF Downloads 464247 Comparison of Quality of Life One Year after Bariatric Intervention: Systematic Review of the Literature with Bayesian Network Meta-Analysis
Authors: Piotr Tylec, Alicja Dudek, Grzegorz Torbicz, Magdalena Mizera, Natalia Gajewska, Michael Su, Tanawat Vongsurbchart, Tomasz Stefura, Magdalena Pisarska, Mateusz Rubinkiewicz, Piotr Malczak, Piotr Major, Michal Pedziwiatr
Abstract:
Introduction: Quality of life after bariatric surgery is an important factor when evaluating the final result of the treatment. Considering the vast surgical options, we tried to globally compare available methods in terms of quality of following the surgery. The aim of the study is to compare the quality of life a year after bariatric intervention using network meta-analysis methods. Material and Methods: We performed a systematic review according to PRISMA guidelines with Bayesian network meta-analysis. Inclusion criteria were: studies comparing at least two methods of weight loss treatment of which at least one is surgical, assessment of the quality of life one year after surgery by validated questionnaires. Primary outcomes were quality of life one year after bariatric procedure. The following aspects of quality of life were analyzed: physical, emotional, general health, vitality, role physical, social, mental, and bodily pain. All questionnaires were standardized and pooled to a single scale. Lifestyle intervention was considered as a referenced point. Results: An initial reference search yielded 5636 articles. 18 studies were evaluated. In comparison of total score of quality of life, we observed that laparoscopic sleeve gastrectomy (LSG) (median (M): 3.606, Credible Interval 97.5% (CrI): 1.039; 6.191), laparoscopic Roux en-Y gastric by-pass (LRYGB) (M: 4.973, CrI: 2.627; 7.317) and open Roux en-Y gastric by-pass (RYGB) (M: 9.735, CrI: 6.708; 12.760) had better results than other bariatric intervention in relation to lifestyle interventions. In the analysis of the physical aspects of quality of life, we notice better results in LSG (M: 3.348, CrI: 0.548; 6.147) and in LRYGB procedure (M: 5.070, CrI: 2.896; 7.208) than control intervention, and worst results in open RYGB (M: -9.212, CrI: -11.610; -6.844). Analyzing emotional aspects, we found better results than control intervention in LSG, in LRYGB, in open RYGB, and laparoscopic gastric plication. In general health better results were in LSG (M: 9.144, CrI: 4.704; 13.470), in LRYGB (M: 6.451, CrI: 10.240; 13.830) and in single-anastomosis gastric by-pass (M: 8.671, CrI: 1.986; 15.310), and worst results in open RYGB (M: -4.048, CrI: -7.984; -0.305). In social and vital aspects of quality of life, better results were observed in LSG and LRYGB than control intervention. We did not find any differences between bariatric interventions in physical role, mental and bodily aspects of quality of life. Conclusion: The network meta-analysis revealed that better quality of life in total score one year after bariatric interventions were after LSG, LRYGB, open RYGB. In physical and general health aspects worst quality of life was in open RYGB procedure. Other interventions did not significantly affect the quality of life after a year compared to dietary intervention.Keywords: bariatric surgery, network meta-analysis, quality of life, one year follow-up
Procedia PDF Downloads 159246 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study
Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.Keywords: propensity score, stratification, emprical distribution, average treatment effect
Procedia PDF Downloads 96245 Reinforcement Learning the Born Rule from Photon Detection
Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar
Abstract:
The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement
Procedia PDF Downloads 108244 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)
Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour
Abstract:
Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.Keywords: standpipe, diver, FOCS, monitoring, Raman scattering
Procedia PDF Downloads 357243 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 158242 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 111241 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 575240 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 409239 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 146238 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 126237 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 347