A Discovery on the Symmetrical Pattern of Mirror Primes in P²: Applications in the Formal Proof of the Goldbach Conjecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87339
A Discovery on the Symmetrical Pattern of Mirror Primes in P²: Applications in the Formal Proof of the Goldbach Conjecture

Authors: Yingxu Wang

Abstract:

The base 6 structure and properties of mirror primes are discovered in this work towards the proof of Goldbach Conjecture. This paper reveals a fundamental pattern on pairs of mirror primes adjacent to any even number nₑ > 2 with symmetrical distances on both sides determined by a methodology of Mirror Prime Decomposition (MPD). MPD leads to a formal proof of the Goldbach conjecture, which states that the conjecture holds because any pivot even number, nₑ > 2, is a sum of at least an adjacent pair of primes divided by 2. This work has not only revealed the analytic pattern of base 6 primes but also proven the infinitive validation of the Goldbach conjecture.

Keywords: number theory, primes, mirror primes, double recursive patterns, Goldbach conjecture, formal proof, mirror-prime decomposition, applications

Procedia PDF Downloads 49