Liquid-Liquid Transitions in Strontium Tellurite Melts

Authors: Rajinder Kaur, Atul Khanna

Abstract: Transparent glass-ceramic and crystalline samples of the system: xSrO-(100-x)TeO₂; x = 7.5 and 8.5 mol% were prepared by quenching the melts in the temperature range of 700 to 950oC. A very interesting effect of the temperature on the glass-forming ability (GFA) of strontium tellurite melts is observed, and it is found that the melts produce transparent glass-ceramics when it is solidified from lower temperatures in the range of 700-750oC, however, when the melts are cooled from higher temperatures in the range of 850-950oC, the GFA is significantly reduced and anti-glass and/or crystalline phases are produced on solidification. The effect of temperature on GFA of strontium tellurite melts is attributed to short-range structural transformations: TeO₄→TeO₃ which proceeds towards the right side with an increase in temperature. This isomerization reaction lowers the melt viscosity and enhances the crystallization tendency. It is concluded that the high-temperature strontium tellurite melts freeze faster into crystalline phases as compared to the melts at a lower temperature; the latter supercool and solidify into glassy phases.

Keywords: anti-glass, ceramic, supercool liquid, Raman spectroscopy

Conference Title: ICPPAGCM 2022: International Conference on Properties, Production and Applications of Glass-Ceramic Materials

Conference Location: Vancouver, Canada

Conference Dates: August 08-09, 2022