Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30574
Sustainable Control of Taro Beetles via Scoliid Wasps and Metarhizium anisopliae

Authors: P. Birch, F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, H. Lu


Taro Scarab beetles (Papuana uninodis, Coleoptera: Scarabaeidae) inflict severe damage on important root crops and plants such as Taro or Cocoyam, yam, sweet potatoes, oil palm and coffee tea plants across Africa and Asia resulting in economic hardship and starvation in some nations. Scoliid wasps and Metarhizium anisopliae fungus - bio-control agents; are shown to be able to control the population of Scarab beetle adults and larvae using a newly created simulation model based on non-linear ordinary differential equations that track the populations of the beetle life cycle stages: egg, larva, pupa, adult and the population of the scoliid parasitoid wasps, which attack beetle larvae. In spite of the challenge driven by the longevity of the scarab beetles, the combined effect of the larval wasps and the fungal bio-control agent is able to control and drive down the population of both the adult and the beetle eggs below the environmental carrying capacity within an interval of 120 days, offering the long term prospect of a stable and eco-friendly environment; where the population of scarab beetles is: regulated by parasitoid wasps and beneficial soil saprophytes.

Keywords: Metarhizium anisopliae, parasitoids, Scoliid wasps, Sustainable control, Taro beetles

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890


1] J. A. Powell (2009). Coleoptera. In Vincent H. Resh & Ring T. Cardé. Encyclopedia of Insects (2nd ed.). Academic Press. p. 1132. ISBN 978- 0-12-374144-8.
[2] A. Carmichael (2005). Taro beetle (Papuana uninodis) Updated on 1/8/2007 8:26:32 AM Available online: PaDIL -
[3] L. Smee (1965). Insect pests of sweet potato and taro in the Territory of Papua and New Guinea, their habits and control. Papua New Guinea Agric. J. 17:99-101
[4] E. Jarvis (1932). The biological control of cane-grubs. Tropical Agriculture 9(11): 331–333.
[5] F. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P.M. Birch (2014a). Biological Control of Taro Scarab Beetle (Papuanauninodis,Coleoptera: Scarabaeidae) Instars via scoliid and Voria tachinidae Parasiod Wasps. International Journal of Applied Biology and Pharmaceutical Technology, Volume 5, Issue 3, 47-55 July –Sept 2014, ISSN: 0976-4550
[6] G. Zimmerman (1992). Use of fungus Beauveria brongniartii for the control of European cockchafers, Melolontha spp., in Europe. In: Use of pathogens in scarab pest management. (Glare, T.R. and Jackson, T.A., eds.) Intercept: Andover. 199–207.
[7] A. Rath (1992). Metarhizium anisopliae for control of the Tasmanian pasture scarab (Adroryphorus couloni). In: Use of pathogens in scarab pest management (Glare, T.R. and Jackson, T.A., eds.). Intercept: Andover. 217–222.
[8] G. O. Bedford (1986). Biological control of the rhinoceros beetle (Oryctes rhinoceros) in the South Pacific by baculovirus. Agriculture, Ecosystem and Environment 15: 141–147
[9] D. F. Waterhouse and K. R. Norris, (1987). Biological Control: Pacific Prospects. Inkata Press, Melbourne. 454 pp.
[10] E. C. Young (1986). The rhinoceros beetle project: History and review of the research programme Agriculture. Ecosystems and Environment 15: 149-166.
[11] T. R. Glare (1992). Fungal pathogens of scarabs. pp. 6377. In T. R. Glare and T. A. Jackson (eds.), Use of Pathogens in Scarabs Pest Management. Intercept: Andover
[12] D.E. Shaw (1984). Microorganisms in Papua New Guinea. Research Bulletin No. 33, Department of Primary Industry PNG, 344 pp.
[13] W. Theunis and I. Aloali’I, (1999). Susceptibility of taro beetle (Papuana uninodis, Coleoptera: Scarabaeidae) to new Bacillus popilliae isolates from Papuana spp. Journal of Invertebrate Pathology 73: 255– 359.
[14] M. G. Klein (1990). Efficacy against soil-inhabiting insect pests. In: Entomopathogenic nematodes in biological control. Gaughler, R. and Kaya, H.K. eds.). CRC Press: Boca Raton FL USA. 195–214.
[15] E. Erin Morris and Parwinder S. Grewal. “Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes”. J Nematol. 2011 Sep-Dec; 43(3-4): 196–200.
[16] F. Faithpraise, P. Birch, R. Young, J. Obu, B. Faithpraise and C. Chatwin (2013). Automatic plant pest detection & recognition using kmeans clustering algorithm & correspondence filters, International Journal of Advanced Biotechnology and Research, Vol. 4, Issue 2, 2013, pp 1052-1062, ISSN 0976-2612
[17] W. Theunis, I. Aloali'I, R. Masamdu, and B. Thistleton (1993). Prospects for biological control of taro beetles, Papuana spp . (Coleoptera: Scarabaeidae), in the South Pacific. Research extension series. College of Tropical Agriculture and Human Resources. p66-72
[18] S. Sar, T. Solulu and A. Darie (1990). Taro beetle on betelnut (Areca catechu). pp. 55. In 1989 Annual R.esearch Report. Agric. Res. Div., Dept. of Agric. And Livestock, Papua New Guinea.
[19] B. M. Thistleton (1984). Taro beetles. Entomology Bull. No. 29. Harvest 10: 32-35.
[20] S. Bhattacharjee, S. Saha, and D. Raychaudhuri (2010). Scoliid wasps (Hymenoptera: = Vespoidea) of Jaldapara Wildlife Sanctuary, West Bengal, India. Munis Entomology & Zoology, 5 (2): 661-669
[21] M. G. Elliott (2011). Annotated catalogue of the Australian Scoliidae (Hymenoptera). Technical Reports of the Australian Museum, Online 22: 1–17. (16 February 2011)doi:10.3853/j.1835-4211.22.2011.1562 ISSN 1835-4211
[22] I. Barbara and P. Barratt (2003) .Aspects of reproductive biology and behaviour of scoliid wasps” Doc Science Internal Series 147 Published by Department of Conservation PO Box 10-420 Wellington, New Zealand October 2003, ISSN 1175.6519. ISBN 0.478.22513.X
[23] K. V. Krombein (1963). The Scoliidae of New Guinea, Bismarck Archipelago, and Solomon Islands. Nova Guinea, Zoology,22:543-651,
[24] R. M. Misra (1996). Some observations on the life history and behaviour of Scolia (Discolia) affinis Guerin (Hymenoptera: Scoliidae) a parasite of Holotrichia consanguinea Blanch (Coleoptera: Scarabaeidae). Indian Forester 112: 1174.1178.
[25] E.E. Grissell (2007). Scoliid Wasps of Florida, Campsomeris, Scolia, and Trielis spp. (Insecta: Hymenoptera: Scoliidae), Featured Creatures. DPI Entomology Circulars 179 and 185, University of Florida
[26] D. K. Yeates, D. P. Logan and C. Lambkin (1999). Immature stages of the bee fly Ligyra satyrus (F.) (Diptera: Bombyliidae): A hyperparasitoid of canegrubs (Coleoptera: Scarabaeidae). Australian Journal of Entomology (1999) 38, 300–304
[27] T. A. Ugine. Metarhizium (Order: Hypocreales, Family: Clavicipitaceae) Biological control, College of Agriculture and Life Sciences, Department of Entomology. Cornell University. tml (Retrieved 14/05/14)
[28] N. K Maniania, S. Sithanantham, S. Ekesi, K. Ampong-Nyarko, J. Baumgärtner, B. Löhr, and C. M. Matoka (2003). A field trial of the entomopathogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Prot. 22: 553-559.
[29] E. J. Scholte, K. Ng'habi, J. Kihonda, W. Takken, K. Paaijmans, S. Abdulla, G. F. Killeen, and B. G. J. Knols, (2005). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308: 1641-1642.
[30] N. Meyling and J. Eilenberg (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 43: 145-155.
[31] G. Hu, and R. A. St. Leger (2002). Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 68: 6383-6387.
[32] R. Moslim, M. B. Wahid, N. Kamarudin, S. R. A. Ali and N. H. Hamid (2006). Research Into the Commercialization of Metarhizium Anisopliae (Hyphomycetes) for Biocontrol of the Rhinoceros Beetle,Oryctes Rhinoceros (Scarabaeidae), In Oil Palm Journal of Oil Palm Research (Special Issue - April 2006), P. 37-49
[33] D. I. Swan (1974). A review of the work on predators, parasites and pathogens for the control of Oryctes rhinoceros (Coleoptera: Scarabaeidae) in the Pacific area.Commonwealth Institute of Biological Control misc. pub. no. 7. 64 p. default.aspx
[34] L. K. Tanigoshi, G., B. S. Gerdeman and G. H. Spitler, (2008). Evaluation of Novel Mode of Action Insecticides to Control Tuber Flea Beetle in Potato, 2008. Washington State University. Mount Vernon Northwestern Research and Extension Center Mount Vernon, WA 98273-4768. B.bioassays.08.html
[35] Y. Tanada, and H. K. Kaya (1993). Insect Pathology, Academic Press, San Diego, CA.
[36] S. Dara An update on the Bagrada bug March 15, 2013.
[37] F. E. Klassische (1969). Klassische Runge-Kutta-Formeln fünfter and siebenter Ordnung mit Schrittweiten-Kontrolle, Computing Arch. Elektron. Rechnen) 4 1969 93-106.
[38] J. R. Dormand, and P. J. Prince (1981). High order embedded Runge- Kutta formulae, J. Comput. Appl. Math. 7 (1981), no.1, 67-75.
[39] J. Butcher (2007) Runge-Kutta methods. Scholarpedia, 2(9):3147.
[40] R. Schreiber (2007) MATLAB. Scholarpedia, 2(7):2929.
[41] F. Faithpraise, C. R. Chatwin, J. Obu , B. Olawale, R. C. D. Young, and P.M. Birch, (2014b). Timely Control of Aphis craccivora Using an automatic robotic drone management system (ARDMS). Systems Science & Control Engineering – An Open Access Journal, Taylor & Francis, in press
[42] F. Faithpraise, C. R. Chatwin, J. Obu , B. Olawale, R. C. D. Young, and P.M. Birch, (2014c). Sustainable Control of Anopheles Mosquito Population. Environment, Ecology & Management, Vol 3(1). 1-19
[43] F. Faithpraise, J. Idung, B. Usibe, C. Chatwin, R. Young, P. Birch (2014d) Natural control of the mosquito population via Odonata and Toxorhynchites. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). Vol. 3, Issue 5, ISSN: 2319- 8753. May 2014
[44] F. M. Freimoser, S. Screen, S. Bagga, G. Hu, and R. J. St. Leger, R.J. (2003). EST analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149 (Pt 1): 239–247. doi:10.1099/mic.0.25761-0