A Floating Gate MOSFET Based Novel Programmable Current Reference
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
A Floating Gate MOSFET Based Novel Programmable Current Reference

Authors: V. Suresh Babu, Haseena P. S., Varun P. Gopi, M. R. Baiju

Abstract:

In this paper a scheme is proposed for generating a programmable current reference which can be implemented in the CMOS technology. The current can be varied over a wide range by changing an external voltage applied to one of the control gates of FGMOS (Floating Gate MOSFET). For a range of supply voltages and temperature, CMOS current reference is found to be dependent, this dependence is compensated by subtracting two current outputs with the same dependencies on the supply voltage and temperature. The system performance is found to improve with the use of FGMOS. Mathematical analysis of the proposed circuit is done to establish supply voltage and temperature independence. Simulation and performance evaluation of the proposed current reference circuit is done using TANNER EDA Tools. The current reference shows the supply and temperature dependencies of 520 ppm/V and 312 ppm/oC, respectively. The proposed current reference can operate down to 0.9 V supply.

Keywords: Floating Gate MOSFET, current reference, self bias scheme, temperature independency, supply voltage independency.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1097106

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756

References:


[1] Ye, R. W., and Tsividis, Y. P., “Bandgap voltage reference sources in CMOS technology ”, Electron. Lett., vol. 18, pp. 24-25, 1982.
[2] R. Dehghani, S. M. Atarodi, “A new low voltage precision CMOS current reference with no external components ”, IEEE Trans. Circuits Syst. II, vol. 50, no.12, pp. 928-932, Dec. 2003.
[3] Bendali, A., and Audet, Y., “A 1-V CMOS current reference with temperature and process compensation ”, IEEE Trans. Circuits Syst. I, vol. 54, no. 2, pp. 1424-1429, 2007.
[4] J. Chen and B. Shi, “1 V CMOS current reference with 50 ppm/0C temperature coecient ”, Electron. Lett., vol. 39, pp. 209-210, Jan. 2003.
[5] F. Fiori, P. S. Crovetti, “A new compact temperature-compensated CMOS current reference ”, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52, no. 11, pp. 724-728, Nov. 2005.
[6] C. Yoo, J. Park, “CMOS current reference with supply and temperature compensation ”, Electronic letters, IET Jour. Vol. 43, Issue 25, Dec. 2007.
[7] J. Ramirez-Angulo, S. C. Choi, G. Gonzalez-Altamirano, “Low Voltage OTA Architecture Using Multiple Input Floating Gate Transistor ”, J. IEEE Trans. Circuits Syst. ,vol. 42, no. 12, pp. 971-974, Nov. 1995.
[8] E. Sanchez-Sinencio, A. G. Andreou, “Low Votage/Low Power Integrated Circuits and Systems ”, IEEE Press., 1999.
[9] S. S. Rajput, S. S. Jamuar, “Design Techniques For Low Voltage Analog Circuits Structures ”, NSM2001/IEEE, Malaysia, Nov. 2001.
[10] Susheel Sharma, S. S. Rajput, L. K. Magotra, S. S. Jamuar, “FGMOS based wide range low voltage current mirror and its applications ”, Circuits and systems, APCCAS’02, 2002 Asia-Pacific Conference, Vol. 2, pp. 331- 334, Oct. 2002.
[11] V. Suresh Babu, Rose Katherine A. A., M. R. Baiju, “Adaptive Neuron Activation Function with FGMOS Based Operational Transconductance Amplifier ”, Proceedings of IEEE Computer Society, Annual Symposium on VLSI, April 2007.
[12] P. Hasler, T. S. Lande, “Overview of floating gate devices, circuits and systems ”, IEEE J. Solid State Circuits, vol. 48, no.1, pp. 1-3, Jan 2001.
[13] Paul Hasler. “Floating Gate Devices, Circuits, and Systems ”, IEEE Cmputer society, Proc. 9th International Database Engineering and Applications Symp., 2005.
[14] S. Tuan Wang, “On the I-V characteristics of floating gate MOS transistor ”, IEEE Trans. Elect. Devices, vol. 26, no. 9, pp. 1292-1294, Sept. 1979.
[15] Venkatesh Srinivasan, G. Serrano, C. M. Twigg, Paul Hasler, “A Floating gate Based Programmable CMOS reference ”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3448-3456, Dec. 2008.
[16] P. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis and Design of Analog Integrated Circuits ”, 4th ed. Hoboken, NJ: Wiley, 2001.