The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates

Authors: E. Moroydor Derun, N. Tugrul, F. T. Senberber, A. S. Kipcak, S. Piskin

Abstract:

In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80oC reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.

Keywords: Hydrothermal synthesis, copper borates, copper sulfate, tincalconite.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096563

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3516

References:


[1] ETI MINE General Directorate, “Bor sector report”, Istanbul, 2013.
[2] J. Schlüter, D. Pohl, U. Golla Schindler, “Santarosaite, CuB2O4, a new mineral with disordered structure from the Santa Rosa mine, Atacama desert, Chile”, Neues Jahrbuch für Mineralogie-Abhandlungen, vol. 185, 27-32, 2008.
[3] A.R. Kampf, G. Favreau, “Jacquesdietrichite, Cu2
[BO(OH)2](OH)3, a new mineral from the Tachgagalt mine, Morocco: Description and crystal structure”, European Journal of Mineralogy, vol. 16, 361-366, 2004.
[4] J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, “Handbook of Mineralogy, 1997, vol. 3, 35,.
[5] P. A. Kokkoros, P. J. Rentzeperis, "The crystal structure of the anhydrous sulphates of copper and zinc", Acta Crystallographica, vol. 11, 361–364, 1958.
[6] M. R. Snure, A. Tiwari, “CuBO2: A p-type transparent oxide”, Applied Physics Letters, vol. 91, 1-4, 2007.
[7] N. V. Kuratieva, D. Mikhailova, H. Ehrenberg, “A new polymorph of Cu3B2O6”, Acta Crystallographica Section C - Crystal Structure Communications, vol. C65, i85–i86, 2009.
[8] M. R. Snure, “Transparent conducting oxides and their applications”, 2009, PhD Thesis, The University of Utah, Utah, USA.
[9] S.S. Nair, “Effectiveness of Copper-Boron Diffusion Treatments for Wood”, 2006, MSc. Thesis, University of Idaho, Moscow, USA.
[10] C. Zhu, W. Li, X. Nai1, D. Zhu, F. Guo, S. Song, “Preparation of copper aluminum borate whiskers via flux method”, Crystal Research and Technology, vol. 47, 73-78, 2012.
[11] D. O. Scanlon, A. Walsh, G. W. Watson, “Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis”, Chemistry of Materials, vol. 21, 4568–4576, 2009.
[12] P.S. Malavi, S. Karmakar, S.M. Sharma, “High pressure structural investigations of copper metaborate (CuB2O4)”, SOLID STATE PHYSICS: Proceedings of the 57th DAE Solid State Physics Symposium, vol. 1512, 88-89, 2013.
[13] Y. Zheng, Z. Wang, Y. Tian, Y. Qu, S. Li, D. An, X. Chen, S. Guan, “Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 349, 156– 161, 2009.
[14] S. Santra, N.S. Das, K.K. Chattopadhyay, “Sol–gel synthesis and characterization of wide band gap p-type nanocrystalline CuBO2”, Materials Letters, vol. 92, 198–201, 2013.
[15] E. Moroydor Derun, A. S. Kipcak, “Characterization of some boron minerals against neutron shielding and 12 year performance of neutron permeability”, Journal of Radioanalytical and Nuclear Chemistry, vol. 292, 871-878, 2012.
[16] C.E. Weir, R.A. Schroer, “Infrared spectra of the crystalline inganic borates”, Journal of Research of The National Bureau of Standards- A. Physics ond Chemistry, vol. 68A, 465–486, 1964.
[17] J. Yongzhong, G. Shiyang, X. Shuping, L. Lun, “FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate”, Spectrochimica Acta Part A, 56, 1291–1297, 2000.