Histochemistry of Intestinal Enzymes of Juvenile Dourado Salminus brasiliensis Fed Bovine Colostrum
Authors: Debora B. Moretti, Wiolene M. Nordi, Thaline Maira P. Cruz, José Eurico P. Cyrino, Raul Machado-Neto
Abstract:
Enzyme activity was evaluated in the intestine of juvenile dourado (Salminus brasiliensis) fed with diets containing 0, 10 or 20% of lyophilized bovine colostrum (LBC) inclusion for either 30 or 60 days. The intestinal enzymes acid and alkaline phosphatase (ACP and ALP, respectively), non-specific esterase (NSE), lipase (LIP), dipeptidyl aminopeptidase IV (DAP IV) and leucine aminopeptidase (LAP) were studied using histochemistry in four intestinal segments (S1, S2, S3 and posterior intestine). Weak proteolitic activity was observed in all intestinal segments for DAP IV and LAP. The activity of NSE and LIP was also weak in all intestines, except for the moderate activity of NSE in the S2 of 20% LBC group after 30 days and in the S1 of 0% LBC group after 60 days. The ACP was detected only in the S2 and S3 of the 10% LBC group after 30 days. Moderate and strong staining was observed in the first three intestinal segments for ALP and weak activity in the posterior intestine. The activity of DAP IV, LAP and ALP were also present in the cytoplasm of the enterocytes. In the present results, bovine colostrum feeding did not cause alterations in activity of intestinal enzymes.
Keywords: Carnivorous fish, enterocyte, intestinal epithelium, teleost.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096253
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012References:
[1] A. Huguet, B. Sève, J. Le Dividich, and I. Le Huërou-Luron, "Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets”, Reproduction Nutrition Development, vol. 46, pp. 167- 178, 2006.
[2] A.L. Lima, P. Pauletti, I. Susin, and R. Machado-Neto, "Fluctuation of serum variables in goats and comparative study of antibody absorption in newborn kids using cattle and goat colostrum”, Brazilian Journal of Animal Science, vol. 38, pp. 2211-2217, 2009.
[3] D.B. Moretti, L. Kindlein, P. Pauletti, and R. Machado-Neto, "IgG absorption by Santa Ines lambs fed Holstein bovine colostrum or Santa Ines ovine colostrum”, Animal, vol. 4, pp. 933-937, 2010.
[4] A.P.O Rodrigues, P. Pauletti, L. Kindlein, J.E.P. Cyrino, E.F. Delgado, and R. Machado-Neto, "Intestinal morphology and histology of the striped catfish Pseudoplatystoma fasciatum (Linnaeus, 1766) fed dry diets”, Aquaculture Nutrition, vol. 15, pp. 55-563, 2009.
[5] P. Bodammer, C. Maletzki, G. Waitz, and J. Emmrich, "Prophylatic application of bovine colostrum ameliorates murine colitis via induction of immunoregulatory cells”, Journal of Nutrition, vol. 141, pp. 1056- 1061, 2011.
[6] D.B. Moretti, W.M. Nordi, A.L. Lima, P. Pauletti, I. Susin, and R. Machado-Neto, "Enzyme activity in the small intestine of goat kids during the period of passive immunity acquisition”, Small Ruminant Research, vol. 105, pp. 321-328, 2012.
[7] N.N. Pandey, A.A. Dar, D.B. Mondal, and L. Nagaraja, "Bovine colostrum: A veterinary nutraceutical”, Journal of Veterinary Medicine and Animal Health, vol. 3, pp. 31-35, 2011.
[8] L.J. Schep, I.G. Tucker, G. Young, R. Ledger, and A.G. Butt, "Controlled release opportunities for oral peptide delivery in aquaculture”, Journal of Controlled Release, vol. 59, pp. 1-14, 1999.
[9] R.L. Barbieri, and F.J. Hernández-Blazquez, "Análise ultra-estrutural da absorção intestinal de macromolécula protéica com o uso de peixe como modelo experimental”, ConScientiae Saúde, vol. 1, pp. 21-30, 2002.
[10] K. Opuszynski, and J.V. Shireman, "Digestive mechanisms (book style)”. In Herbivorous Fishes: Culture and Use for Weed Management, K. Opuszynski and J.V. Shireman, Boca Raton, FL: CRC Press, 1995, pp.21-31.
[11] R. Ledger, I.G. Tucker, and G.F. Walker, "The metabolic barrier of the lower intestinal tract of salmon to the oral delivery of protein and peptide drugs”, Journal of Controlled Release, vol. 85, pp. 91-103, 2002.
[12] D.M. Fracalossi, G. Meyer, F.M. Santamaria, M. Weingastner, and E. Zaniboni Filho, "Desempenho do jundiá, Rhamdia quelen, e do dourado, Salminus brasiliensis, em viveiros de terra na Região Sul do Brasil”, Acta Scientiarum, vol. 26, pp. 345-352, 2004.
[13] Association of Official Analytical Chemists. Official methods of analysis, 18th ed. vol. 2, Arlington, VA: AOAC, 2004.
[14] S.S. Rodrigues, and E. Menin, "Anatomia do tubo digestivo de Salminus brasiliensis (Cuvier, 1818) (Pisces, Characidae, Salmininae)”, Biotemas, vol. 21, pp. 65-75, 2008.
[15] Z. Lodja, "Studies on Dipeptidyl(Amino)Peptidase IV (Glycyl-Proline Naphthylamidase)”, Histochemistry, vol. 59, pp. 153-166, 1979.
[16] J.D. Bancroft, "Enzyme histochemistry”, in Theory and Practice of Histological Techniques, vol. 4, J.D. Bancroft, and A. Stevens), New York, NY: Churchill Livingstone, 1996, pp.391-410.
[17] K.N. Hirji, and W.A.M. Courtney "Leucine aminopeptidase activity in the digestive tract of perch, Perca fluviatilis L”, Journal of Fish Biology, vol. 21, pp. 615–622, 1982.
[18] A. Gawlicka, S. Teh, S.S.O. Hung, E. Hinton, and J. De Ll Noüe, "Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny”, Fish Physiology and Biochemistry, vol. 14, pp. 357-371, 1995.
[19] B. Tengjaroenkul, B.J. Smith, T. Caceci, and S.A. Smith, "Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L”, Aquaculture, vol. 182, pp. 317–327, 2000.
[20] V.V. Kuz’mina, "Classical and modern concepts in fish digestion”, in Feeding and Digestive Functions of Fishes, J.E.P Cyrino, D.B Bureau, and B.G. Kapoor, Enfield, NH: Science Publishers, 2008, pp. 85-154.
[21] V.V. Kuz’mina, and A.G. Gelman, "Membrane-linked digestion in fish”, Reviews in Fisheries Science, vol. 5, pp. 99-129, 1997.
[22] E. McLean, B. Rønsholdt, C. Sten, and Najamuddin, "Gastrointestinal delivery of peptide and protein drugs to aquaculture teleosts”, Aquaculture, vol. 177, pp. 231-247, 1999.
[23] J. Walford, and T.J. Lam, "Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles”, Aquaculture, vol. 109, pp. 187-05, 1993.
[24] J.L. Zambonino Infante, and C.J. Cahu, "High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development”, Journal of Nutrition, vol. 129, pp. 1195-1200, 1999.
[25] V. Buchet, J.L. Zambonino Infante, and C.L. Cahu, "Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae”, Aquaculture, vol. 184, pp. 339-347, 2000.
[26] M.S. Izquierdo, J. Socorro, L. Arantzamendi, and C.M. Hernandez-Cruz, "Recent advances in lipid nutrition in fish larvae”, Fish Physiology and Biochemistry, vol. 22, pp. 97-107, 2000.
[27] S. Morais, M. Lacuisse, L.E.C. Conceição, M.T. Dinis, and I. Rønnestad, "Ontogeny of the digestive capacity of Senegalese sole (Solea senegalensis), with respect to digestion, absorption and metabolism of amino acids from Artemia”, Marine Biology, vol. 145, pp. 243-50, 2004.
[28] B. Savona, C. Tramati, and A. Mazzola, "Digestive enzymes in larvae and juveniles of farmed sharpsnout seabream (Diplodus puntazzo) (Cetti, 1777)”, The Open Marine Biology Journal, vol. 5, pp. 47-57, 2011.
[29] Z. Kozarić, Z. Petrinec, S. Kužir, E. Gjurčević, and B. Baždarić, "Histochemical analyses of digestive enzymes in the intestine of adult large-scale gurnard (Lepidotrigla cavillone, Lacepède, 1801)”, Anatomia, Histologia, Embryologia, vol. 40, pp. 314-320, 2011.
[30] K. Baintner, 1994, "Demonstration of acidity intestinal vacuoles of the suckling rat and pig”, Journal of Histochemistry and Cytochemistry, vol. 42, pp. 231-238, 1994.
[31] I. Hussain, and A. Channa, "Histochemical distribution of lipase and acid phosphatase in the intestinal tract of the snow trout, Schizothorax curvifrons Heckel”, Journal of Biological Sciences, vol. 10, pp. 643-647, 2010.
[32] Y. Dupuis, S. Tardivel, Z. Porembska, and P. Fournier, "Effect of some phosphatase inhibitors on intestinal calcium transfer”, International Journal of Biochemistry, vol. 23, pp. 175–180, 1991.
[33] A. Mahmood, F. Yamagishi, R. Eliakim, K. DeSchryver-Kecskemeti, T.L. Gramlich, and D.H. Alpers, "A possible role for rat intestinal surfactant-like particles in transepithelial triacylglycerol transport”, Journal of Clinical Investigation, vol. 93, pp. 70–80, 1994.
[34] Z. Kozarić, S. Kužir, Z. Petrinec, E. Gjurčević, and A. Opačak, "Histochemical distribution of digestive enzymes in intestine of goldline, Sarpa salpa L. 1758”, Journal of Applied Ichthyology, vol. 22, pp. 43-48., 2006.