Systematic Identification and Quantification of Substrate Specificity Determinants in Human Protein Kinases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Systematic Identification and Quantification of Substrate Specificity Determinants in Human Protein Kinases

Authors: Manuel A. Alonso-Tarajano, Roberto Mosca, Patrick Aloy

Abstract:

Protein kinases participate in a myriad of cellular processes of major biomedical interest. The in vivo substrate specificity of these enzymes is a process determined by several factors, and despite several years of research on the topic, is still far from being totally understood. In the present work, we have quantified the contributions to the kinase substrate specificity of i) the phosphorylation sites and their surrounding residues in the sequence and of ii) the association of kinases to adaptor or scaffold proteins. We have used position-specific scoring matrices (PSSMs), to represent the stretches of sequences phosphorylated by 93 families of kinases. We have found negative correlations between the number of sequences from which a PSSM is generated and the statistical significance and the performance of that PSSM. Using a subset of 22 statistically significant PSSMs, we have identified specificity determinant residues (SDRs) for 86% of the corresponding kinase families. Our results suggest that different SDRs can function as positive or negative elements of substrate recognition by the different families of kinases. Additionally, we have found that human proteins with known function as adaptors or scaffolds (kAS) tend to interact with a significantly large fraction of the substrates of the kinases to which they associate. Based on this characteristic we have identified a set of 279 potential adaptors/scaffolds (pAS) for human kinases, which is enriched in Pfam domains and functional terms tightly related to the proposed function. Moreover, our results show that for 74.6% of the kinase–pAS association found, the pAS colocalize with the substrates of the kinases they are associated to. Finally, we have found evidence suggesting that the association of kinases to adaptors and scaffolds, may contribute significantly to diminish the in vivo substrate crossed-specificity of protein kinases. In general, our results indicate the relevance of several SDRs for both the positive and negative selection of phosphorylation sites by kinase families and also suggest that the association of kinases to pAS proteins may be an important factor for the localization of the enzymes with their set of substrates.

Keywords: Kinase, phosphorylation, substrate specificity, adaptors, scaffolds, cellular colocalization.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093253

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489

References:


[1] P. Cohen, "The origins of protein phosphorylation.” Nature cell biology, vol. 4, no. 5, pp. E127–30, May 2002.
[2] S. Arena, S. Benvenuti, and a. Bardelli, "Genetic analysis of the kinome and phosphatome in cancer.” Cellular and molecular life sciences : CMLS, vol. 62, no. 18, pp. 2092–9, Sep. 2005.
[3] A. Forrest, T. Ravasi, D. Taylor, T. Huber, D. Hume, and S. Grimmond, "Phosphoregulators: protein kinases and protein phosphatases of mouse,” Genome research, vol. 13, no. 6b, p. 1443, 2003.
[4] G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, "The protein kinase complement of the human genome.” Science (New York, N.Y.), vol. 298, no. 5600, pp. 1912–34, Dec. 2002.
[5] A. Torkamani, G. Verkhivker, and N. J. Schork, "Cancer driver mutations in protein kinase genes.” Cancer letters, vol. 281, no. 2, pp. 117–27, Aug. 2009.
[6] P. Cohen, "The role of protein phosphorylation in human health and disease,” Eur J Biochem., vol. 268, no. 19, pp. 5001–5010, 2001.
[7] L. R. Pearce, D. Komander, and D. R. Alessi, "The nuts and bolts of AGC protein kinases.” Nature reviews. Molecular cell biology, vol. 11, no. 1, pp. 9–22, Jan. 2010.
[8] K. Deshmukh, K. Anamika, and N. Srinivasan, "Evolution of domain combinations in protein kinases and its implications for functional diversity.” Progress in biophysics and molecular biology, vol. 102, no. 1, pp. 1–15, Jan. 2010.
[9] J. Alexander, D. Lim, B. a. Joughin, B. Hegemann, J. R. a. Hutchins, T. Ehrenberger, F. Ivins, F. Sessa, O. Hudecz, E. a. Nigg, A. M. Fry, A. Musacchio, P. T. Stukenberg, K. Mechtler, J.-M. Peters, S. J. Smerdon, and M. B. Yaffe, "Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling.” Science signaling, vol. 4, no. 179, p. ra42, Jan. 2011.
[10] A. N. Kettenbach, D. K. Schweppe, B. K. Faherty, D. Pechenick, A. a. Pletnev, and S. a. Gerber, "Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells.” Science signaling, vol. 4, no. 179, p. rs5, Jan. 2011.
[11] J. Ptacek, G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona, A. Breitkreutz, R. Sopko, R. R. McCartney, M. C. Schmidt, N. Rachidi, S.-J. Lee, A. S. Mah, L. Meng, M. J. R. Stark, D. F. Stern, C. De Virgilio, M. Tyers, B. Andrews, M. Gerstein, B. Schweitzer, P. F. Predki, and M. Snyder, "Global analysis of protein phosphorylation in yeast.” Nature, vol. 438, no. 7068, pp. 679–84, Dec. 2005.
[12] J. A. Ubersax and J. E. Ferrell, "Mechanisms of specificity in protein phosphorylation.” Nature reviews. Molecular cell biology, vol. 8, no. 7, pp. 530–41, Jul. 2007.
[13] B. Kobe, T. Kampmann, and J. K. Forwood, "Substrate specificity of protein kinases and computational prediction of substrates,” Biochimica et biophysica acta, vol. 1754, pp. 200 – 209, 2005.
[14] H. Zhu, J. F. Klemic, S. Chang, P. Bertone, a. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. a. Reed, and M. Snyder, "Analysis of yeast protein kinases using protein chips.” Nature genetics, vol. 26, no. 3, pp. 283–9, Nov. 2000.
[15] J. V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen, and M. Mann, "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.” Cell, vol. 127, no. 3, pp. 635–48, Nov. 2006.
[16] J. Mok, P. M. Kim, H. Y. K. Lam, S. Piccirillo, X. Zhou, G. R. Jeschke, D. L. Sheridan, S. a. Parker, V. Desai, M. Jwa, E. Cameroni, H. Niu, M. Good, A. Remenyi, J.-L. N. Ma, Y.-J. Sheu, H. E. Sassi, R. Sopko, C. S. M. Chan, C. De Virgilio, N. M. Hollingsworth, W. a. Lim, D. F. Stern, B. Stillman, B. J. Andrews, M. B. Gerstein, M. Snyder, and B. E. Turk, "Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs.” Science signaling, vol. 3, no. 109, p. ra12, Jan. 2010.
[17] B. Hegemann, J. R. a. Hutchins, O. Hudecz, M. Novatchkova, J. Rameseder, M. M. Sykora, S. Liu, M. Mazanek, P. Lenart, J.-K. Heriche, I. Poser, N. Kraut, a. a. Hyman, M. B. Yaffe, K. Mechtler, and J.-M. Peters, "Systematic Phosphorylation Analysis of Human Mitotic Protein Complexes,” Science Signaling, vol. 4, no. 198, pp. rs12–rs12, Nov. 2011.
[18] A. Kreegipuu, N. Blom, S. Brunak, and J. Ja, "Statistical analysis of protein kinase specificity determinants,” FEBS letters, vol. 430, pp. 45–50, 1998.
[19] R. H. Newman, J. Hu, H.-S. Rho, Z. Xie, C. Woodard, J. Neiswinger, C. Cooper, M. Shirley, H. M. Clark, S. Hu, W. Hwang, J. Seop Jeong, G. Wu, J. Lin, X. Gao, Q. Ni, R. Goel, S. Xia, H. Ji, K. N. Dalby, M. J. Birnbaum, P. a. Cole, S. Knapp, A. G. Ryazanov, D. J. Zack, S. Blackshaw, T. Pawson, A.-C. Gingras, S. Desiderio, A. Pandey, B. E. Turk, J. Zhang, H. Zhu, and J. Qian, "Construction of human activity-based phosphorylation networks,” Molecular Systems Biology, vol. 9, no. 655, pp. 1–12, Apr. 2013.
[20] G. Z. Hertz and G. D. Stormo, "Identifying DNA and protein patterns with statistically significant alignments of multiple sequences.” Bioinformatics (Oxford, England), vol. 15, no. 7-8, pp. 563–77, 1999.
[21] J. C. Obenauer, "Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs,” Nucleic Acids Research, vol. 31, no. 13, pp. 3635–3641, Jul. 2003.
[22] N. F. W. Saunders, R. I. Brinkworth, T. Huber, B. E. Kemp, and B. Kobe, "Predikin and PredikinDB : a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites,” BMC Bioinformatics, vol. 11, pp. 1–11, 2008.
[23] N. Blom, T. Sicheritz-Pont´en, R. Gupta, S. Gammeltoft, and S. r. Brunak, "Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence.” Proteomics, vol. 4, no. 6, pp. 1633–49, Jun. 2004.
[24] M. C. Good, J. G. Zalatan, and W. a. Lim, "Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information,” Science, vol. 332, no. 6030, pp. 680–686, May 2011.
[25] C. D. White, M. D. Brown, and D. B. Sacks, "IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis.” FEBS letters, vol. 583, no. 12, pp. 1817–24, Jun. 2009.
[26] H. Zhang, A. Photiou, G. Arnhild, J. Stebbing, and G. Giamas, "The role of pseudokinases in cancer.” Cellular signalling, vol. 24, no. 6, pp. 1173–1184, Feb. 2012.
[27] A. S. Shaw and E. L. Filbert, "Scaffold proteins and immune-cell signalling.” Nature reviews. Immunology, vol. 9, no. 1, pp. 47–56, Jan. 2009.
[28] A. Alexa, J. Varga, and A. Rem´enyi, "Scaffolds are ’active’ regulators of signaling modules.” The FEBS journal, vol. 277, no. 21, pp. 4376–82, Nov. 2010.
[29] M. Colledge and J. D. Scott, "AKAPs: from structure to function.” Trends in cell biology, vol. 9, no. 6, pp. 216–21, Jun. 1999.
[30] M. M. McKay, D. a. Ritt, and D. K. Morrison, "Signaling dynamics of the KSR1 scaffold complex.” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11 022–7, Jul. 2009.
[31] F. Ram´ırez and M. Albrecht, "Finding scaffold proteins in interactomes.” Trends in cell biology, vol. 20, no. 1, pp. 2–4, Jan. 2010.
[32] D. F. Brennan, A. C. Dar, N. T. Hertz, W. C. H. Chao, A. L. Burlingame, K. M. Shokat, and D. Barford, "A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK.” Nature, vol. 472, no. 7343, pp. 366–9, Apr. 2011.
[33] W. G. Cance, E. Kurenova, T. Marlowe, and V. Golubovskaya, "Disrupting the Scaffold to Improve Focal Adhesion Kinase-Targeted Cancer Therapeutics,” Science Signaling, vol. 6, no. 268, pp. pe10–pe10, Mar. 2013.
[34] T. S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee, D. S. Somanathan, A. Sebastian, S. Rani, S. Ray, C. J. Harrys Kishore, S. Kanth, M. Ahmed, M. K. Kashyap, R. Mohmood, Y. L. Ramachandra, V. Krishna, B. A. Rahiman, S. Mohan, P. Ranganathan, S. Ramabadran, R. Chaerkady, and A. Pandey, "Human Protein Reference Database–2009 update.” Nucleic acids research, vol. 37, no. Database issue, pp. D767–72, Jan. 2009.
[35] P. V. Hornbeck, I. Chabra, J. M. Kornhauser, E. Skrzypek, and B. Zhang, "PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation.” Proteomics, vol. 4, no. 6, pp. 1551–61, Jun. 2004.
[36] H. Dinkel, C. Chica, A. Via, C. M. Gould, L. J. Jensen, T. J. Gibson, and F. Diella, "Phospho.ELM: a database of phosphorylation sites–update 2011.” Nucleic acids research, vol. 39, no. November 2010, pp. 261–267, Nov. 2010.
[37] J. M. Claverie and S. Audic, "The statistical significance of nucleotide position-weight matrix matches.” Computer applications in the biosciences : CABIOS, vol. 12, no. 5, pp. 431–9, Oct 1996.
[38] G. D. Stormo, "DNA binding sites: representation and discovery.” Bioinformatics (Oxford, England), vol. 16, no. 1, pp. 16–23, Jan. 2000.
[39] R. Mosca, A. C´eol, and P. Aloy, "Interactome3D: adding structural details to protein networks.” Nature methods, vol. 10, no. 1, pp. 47–53, Dec. 2013.
[40] G. Badis, M. F. Berger, A. a. Philippakis, S. Talukder, A. R. Gehrke, S. a. Jaeger, E. T. Chan, G. Metzler, A. Vedenko, X. Chen, H. Kuznetsov, C.-F. Wang, D. Coburn, D. E. Newburger, Q. Morris, T. R. Hughes, and M. L. Bulyk, "Diversity and complexity in DNA recognition by transcription factors.” Science (New York, N.Y.), vol. 324, no. 5935, pp. 1720–3, Jun. 2009.
[41] D. Matenia and E.-M. Mandelkow, "The tau of MARK: a polarized view of the cytoskeleton.” Trends in biochemical sciences, vol. 34, no. 7, pp. 332–42, Jul. 2009.
[42] A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, and K. Iqbal, "Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments.” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6923–8, Jun. 2001.
[43] H. Matsuzaki, A. Ichino, T. Hayashi, T. Yamamoto, and U. Kikkawa, "Regulation of intracellular localization and transcriptional activity of FOXO4 by protein kinase B through phosphorylation at the motif sites conserved among the FOXO family.” Journal of biochemistry, vol. 138, no. 4, pp. 485–91, Oct. 2005.
[44] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman, and R. D. Finn, "The Pfam protein families database.” Nucleic acids research, vol. 40, no. Database issue, pp. D290–301, Jan. 2012.
[45] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, "Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.” Nature genetics, vol. 25, no. 1, pp. 25–9, May 2000.
[46] A. Zeke, M. Luk´acs, W. a. Lim, and A. Rem´enyi, "Scaffolds: interaction platforms for cellular signalling circuits.” Trends in cell biology, vol. 19, no. 8, pp. 364–74, Aug. 2009.
[47] S. Karthikeyan, T. Leung, and J. A. A. Ladias, "Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors.” The Journal of biological chemistry, vol. 277, no. 21, pp. 18 973–8, May 2002.
[48] K. Jiang, E. Pereira, M. Maxfield, B. Russell, D. M. Goudelock, and Y. Sanchez, "Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345.” The Journal of biological chemistry, vol. 278, no. 27, pp. 25 207–17, Jul. 2003.
[49] G. A. Penman, L. Leung, and I. S. N¨athke, "The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions.” Journal of cell science, vol. 118, no. Pt 20, pp. 4741–50, Oct. 2005.
[50] C. Reichen, S. Hansen, and A. Plckthun, "Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins,” Journal of Structural Biology, vol. In press, no. 0, p. http://dx.doi.org/10.1016/j.jsb.2013.07.012, 2013.
[51] R. Roskoski, "ERK1/2 MAP kinases: structure, function, and regulation.” Pharmacological research : the official journal of the Italian Pharmacological Society, vol. 66, no. 2, pp. 105–43, Aug. 2012.
[52] A. C. Lloyd, "Distinct functions for ERKs?” Journal of Biology, vol. 5, no. 5, p. 13, Jan. 2006.