Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel

Authors: A. Panacek, M. Kilianova, R. Prucek, V. Husickova, R. Vecerova, M. Kolar, L. Kvitek, R. Zboril

Abstract:

In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds.

Keywords: Antimicrobial, burn, hydrogel, silver NPs.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093012

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275

References:


[1] C. M. Luna, P. Vujacich, M. S. Niederman, C. Vay, C. Gherardi, J. Matera, and E. C. Jolly, "Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia,” Chest, vol. 111, no. 3, pp. 676–685, Mar. 1997.
[2] J. Rello, A. Torres, M. Ricart, J. Valles, J. Gonzalez, A. Artigas, and R. Rodrigueroisin, "Ventilator Associated Pneumonia by Staphylococcus-Aureus - Comparison of Methicillin-Resistant and Methicillin-Sensitive Episodes,” Am. J. Resp. Crit. Care., vol. 150, no. 6, pp. 1545–1549, Dec. 1994.
[3] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, "The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, Oct. 2005.
[4] I. Sondi, and B. Salopek-Sondi, "Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria,” J. Colloid Interf. Sci., vol. 275, no. pp. 177–182, Jul. 2004.
[5] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecova, and R. Zboril, "Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs),” J. Phys. Chem. C, vol. 112, no. 15, pp. 5825–5834. Apr. 2008.
[6] G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, and F. Ruiz, "Synthesis and antibacterial activity of silver nanoparticles with different sizes,” J. Nanopart. Res., vol. 10, no. 8, pp. 1343–1348, Dec. 2008.
[7] A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, and L. Kvitek, "Antifungal activity of silver nanoparticles against Candida spp,” Biomaterials, vol. 30, no. 31, pp. 6333–6340, Nov. 2009.
[8] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R, Zboril, "Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity,” J. Phys. Chem. B, vol. 110, no. 33, pp. 16248–16253, Aug. 2006.
[9] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, "Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology, vol. 18, no. 22, pp. 225103, Jun. 2007.
[10] S. Krajewski, R. Prucek, A. Panacek, M. Avci-Adali, A. Nolte, A. Straub, R. Zboril, H. P. Wendel, and L. Kvitek, "Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood,” Acta Biomaterialia, vol. 9, no. 7, pp. 7460–7468, Jul. 2013.
[11] W. R. Li, X. B. Xie, Q. S. Shi, S. S. Duan, Y. S. Ouyang, and Y. B. Chen, "Antibacterial effect of silver nanoparticles on Staphylococcus aureus,” Biometals, vol. 24, no. 1, pp. 135–141, Feb. 2011.
[12] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,” Appl. Microbiol. Biot., vol. 85, no. 4, pp. 1115–1122, Jan. 2010.
[13] H. H. Lara, N. V. Ayala-Nunez, L. D. I. Turrent, and C. R. Padilla,” Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria,” World J. Microb. Biot., vol. 26, no. 4, pp. 615–621, Apr. 2010.
[14] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Z. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che, "Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., vol. 5, no. 4, pp. 916–924, Apr. 2006.
[15] O. Choi, and Z. Q. Hu, "Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria,” Environ. Sci. Technol., vol. 42, no. 12, pp. 4583–45888 Jun. 2008.
[16] J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, M. H. Cho, "Antimicrobial effects of silver nanoparticles,” Nanomed. Nanotechnol., vol. 3, no. 1, pp. 95–101, Mar. 2007.
[17] H. Y. Xu, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, and H. Wei, "Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7,” Biometals, vol. 25, no. 1, pp. 45–53, Feb. 2012.
[18] C. L. Fox, and S. M. Modak, S. M., "Mechanism of action of silver sulfadiazine on burn wound infections,” Antimicrob. Agents Chemother., vol. 5, no. 6, pp. 582–588, 1974.
[19] X. Chen, and H. J. Schluesener, "Nanosilver: A nanoproduct in medical application,” Toxicol. Lett., vol. 176, no. 1, pp. 1–12, Jan. 2008.
[20] http://www.silvermedicine.org/medical-products-silver.html.
[21] Y. M. Mohan, T. Premkumar, K. Lee, and K. E. Geckeler, "Fabrication of silver nanoparticles in hydrogel networks,” Macromol. Rapid Commun., vol. 27, no. 16, pp. 1346–1354, Aug. 2006.
[22] V. Thomas, M. Namdeo, Y. M. Mohan, S. K. Bajpai, M. Bajpai, "Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach,” J. Macromol. Sci. A, vol. 45, no. 1, pp. 107–119, 2008.
[23] K. Varaprasad, K. M. Mohan, S. Ravindra, N. Narayana Reddy, K. Vimala, K. Monika, B. Sreedhar and K. Mohana Raju, "Hydrogel–Silver Nanoparticle Composites: A New Generation of Antimicrobials,” J. Polymer. Sci., vol. 115, no. 2, pp. 1199–1207, Jan 2010.
[24] J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, and K. M. Paknikar, "Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use,” Mol. Pharm., vol. 6, no. 5, pp. 1388–1401, Sep.–Oct. 2009
[25] T. R. Thatiparti, A. Kano, A. Maruyama, and A. Takahara, "Novel Silver-Loaded Semi-Interpenetrating Polymer Network Gel Films with Antibacterial Activity, J. Polymer Sci. A., vol. 47, no. 19, pp. 4950–4962, Oct. 2009.