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Abstract—This paper discuss a coupling strategy of two different
software packages to provide fluid structure interaction (FSI) analysis.
The basic idea is to combine the advantages of the two codes
to create a powerful FSI solver for two and three dimensional
analysis. The fluid part is computed by a program called PETSc-FEM
a software developed at Centro de Investigación de Métodos
Computacionales –CIMEC. The structural part of the coupled process
is computed by the research code elementary Parallel Solver –
(ELPASO) of the Technische Universität Braunschweig, Institut für
Konstruktionstechnik (IK).

Keywords—Computational Fluid Dynamics (CFD), Fluid Structure
Interaction (FSI), Finite Element Method (FEM).

I. INTRODUCTION

THE design of many engineering systems has to consider
fluid structure interactions, for instance aircraft, turbines

and bridges, but also medical products like artificial heart
implants. If effects of oscillatory interactions of fluid and
structure is not considered while the design process, it can lead
into catastrophe. One of the probably most famous examples
of large-scale failure is the first Tacoma Narrows Bridge which
collapsed in 1940. Aircraft wings and turbine blades can break
due to FSI oscillations. Another example is the analysis of
aneurysms in arteries and artificial heart valves here fluid
structure interaction has also to be taken into account.

Due to the reason that the analysis of fluid dynamics as
well as the analysis of complex structures in time domain
requires high among of computational power, both codes
are prepared for parallel computation on distributed memory
systems, like computer clusters. Coupled problems like FSI
will need even more computational performance. So that the
FSI analysis benefits of the parallelism of the two codes.
The communication of the processes is realised using the
Message Passing Interface (MPI) [8]. The Portable, Extensible
Toolkit for Scientific Computation (PETSc) [1]–[3] is used to
provide all parallel matrices, vectors and solvers, needed for
the computation.
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II. COMPUTATIONAL METHODS

The coupling process between these codes, PETSc-FEM
[11] and ELPASO [4] will be carried out using a partitioned
technique, which allows the use of preexisting specifics
solvers. When a partitioned coupling technique is used, a
three-field system is involved in the analysis: the structure, the
fluid and the moving mesh solver. In general the governing
equations of the fluid are written in an Eulerian framework
so it must be rewritten to allow the motion of the mesh
using an ALE (Arbitrary Lagrangian Eulerian) formulation.
Regarding to the mesh movement, it is performed using
a nodal relocation, maintaining the topology unchanged.
To perform the nodal relocation of the mesh there exist
several strategies, in PETSc-FEM to propagate the boundary
motion into the volume mesh is solved a linear elastic or
pseudo-elastic problem to deform the mesh. Also can be
chosen a more sophisticated strategy to produce the mesh
motion by solving an optimization problem, in order to obtain
a better quality mesh.

The dynamic behaviour of a fluid flow is governed
by the Navier-Stokes equations, which are set of coupled
conservation laws. It can be enumerated as

• Conservation of mass,
• Conservation of momentum,
• Conservation of energy.
The Navier-Stokes equations can also be simplified in order

to reproduce some particular kind of flows, as example if
the viscosity is assumed to be zero, the fluid is treated
as inviscid and is treated as incompressible if the density
variations with respect to the reference density is negligible.
These approximations are made based on the characteristics of
the flow or based on the properties of the fluid. In this report
a compressible, viscous flow is considered and is described as
a general advective-diffusive system in order to simplify its
interpretation.

The governing equation for the fluid can be written in a
compact form as

R(U) ≡ ∂Uj

∂t
+

(
Fc

jk(U) −Fd
jk(U,∇U)

)
,k

= 0, inΩt (1)

where 1 ≤ k ≤ nd, nd is the number of spatial dimensions,
1 ≤ j ≤ m, m is the dimension of the state vector (e.g. m =
nd+2 for compressible flow), t is time, ( ),k denotes derivative
with respect to the k-th spatial dimension, U = (ρ, ρu, ρe)t ∈
IRnd is the unknown state vector expressed in conservative
variable. Where ρ , u and e represents the density, the velocity
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vector and the specific total energy respectively, and Fc,d
jk ∈

IRm×nd are the convective and diffusive fluxes. Appropriate
Dirichlet and Neumann conditions at the boundary and initial
conditions must be imposed.

The differential equation (1) can be written in an integral
form

∂

∂t

∫
Ω

⎛
⎝ ρ

ρu
ρE

⎞
⎠dΩ+

∫
Ω

⎛
⎝ ρu

ρu ⊗ u + p ¯̄I − ¯̄τ
ρuH − ¯̄τ · u − κ∇T

⎞
⎠

,k

dΩ = 0, (2)

where H is the total specific enthalpy

H = e + p/ρ + 1/2|u|2 = E + p/ρ (3)

defined in terms of the specific internal energy (h = e + p/ρ)
and the specific kinetic energy, respectively.

This set of equations are closed by an equation of state,
being for a polytropic gas

p = (γ − 1)[ρe − 1
2
ρ||u||2], (4a)

T = Cv[e − 1
2
ρ||u||2], (4b)

where γ is ratio of specific heats and Cv is the specific heat
at constant volume. In viscous fluxes, the stress tensor ¯̄τ is
defined for Newtonian flows as

τij = 2μεij(u) + λ(∇ · u)δij , (5)

where the Stoke’s hypothesis is

λ = −2
3
μ, (6)

and the strain rate tensor is

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (7)

Finally, the dynamic viscosity is assumed to be given by the
Sutherland’s law, which gives for an ideal gas the viscosity as
function of the temperature,

μ = μ0

(
T

T0

)3/2
T0 + 110
T + 110

, (8)

where μ0 is the viscosity at the reference temperature T0.
In order to write the semi-discrete form of the compressible

Navier-Stokes equations, it is convenient to write (1) in a
quasi-linear form as

∂U
∂t

+Ak
∂U
∂xk

− ∂

∂xk

(
Kki

∂U
∂xi

)
= 0, inΩt ∀t ∈ (0, T ) (9)

where
∂Fc

∂xk
=

∂Fc

∂U
∂U
∂xk

= Ak
∂U
∂xk

, (10a)

∂Fd

∂xk
=

∂Fd

∂U
∂U
∂xk

= Kki
∂U
∂xk

, (10b)

and Ak are the Jacobians of advective fluxes and Kki are the
Jacobians of diffusive fluxes.

Previous to addressing the variational formulation of the
governing equation, it is necessary to transform the equations

to be solved in an ALE framework as describe in detail in [6],
because the problem is posed in a time-dependent domain Ωt,
it can not be solved with standard fixed-domain methods. After
multiplying equation (1) with a weighting function w(x, t) and
the ALE transformation we obtain

d
dt

(∫
Ωt

w Uj dΩt

)
+
∫

Ωt

(
Fc

jk − v∗kUj −Fd
jk

)
,k

w dΩt = 0. (11)

The variational formulation can be obtained by integrating
by parts, so that

d
dt

(H(w,U)) + F (w,U) = 0, (12)

where

H(w,U) =
∫

Ωt

w Uj dΩt,

F (w,U) = A(w,U) + B(w,U),

A(w,U) = −
∫

Ωt

(
Fc

jk − v∗kUj −Fd
jk

)
w,k dΩt,

B(w,U) =
∫

Γt

(
Fc

jk − v∗kUj −Fd
jk

)
nkw dΓt.

(13)

Γt is the boundary of Ωt, nk is its unit normal vector pointing
to the exterior of Ωt and v∗k are the components of the mesh
velocity.

Finally, the semi-discrete system is discretized in time with
the trapezoidal rule, where

H(w,Un+1) − H(w,Un) = −
∫ tn+1

tn

F (w,Ut′) dt′,

≈ −Δt F (w,Un+θ).
(14)

with 0 ≤ θ ≤ 1 and being Un+θ defined as

Un+θ = (1 − θ)Un + θUn+1. (15)

And during the time step it is assumed that the nodal points
move with constant velocity, i.e.

v∗k(ξ)=
xk(ξ, tn+1) − xk(ξ, tn)

Δt
,

xk(ξ, t)=xk(ξ, tn) + (t − tn)v∗k(ξ),

⎫⎬
⎭,tn ≤ t ≤ tn+1. (16)

As was mentioned previously, in FSI problems the fluid
interacts with a structure which deforms due to the forces
exerted by the fluid, producing a change in the fluid
domain, since the fluid-structure interface follows the structure
displacement. In the discrete fluid flow problem, the change of
the domain must be followed by a change in the discretization.
The discretization of the new domain can be obtained through
a re-meshing process or through a nodal relocation process.
In general, the re-meshing process is undesirable because of
the need of a projection of the flow field from the old to the
new mesh, with the consequent loss of conservativity, possible
addition of numerical diffusion and additional computational
cost. In this coupling process, a relocation technique is
used to update the nodal coordinates of the fluid mesh
in response to the domain deformation, while keeping the
topology unchanged.

A robust alternative to deform the mesh use a linear
elasticity approach, where fluid mesh obey the linear elasticity
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equation to obtain a smooth displacement field, setting as
boundary condition the displacement of the interface. The
equations describing the elastic medium under the hypothesis
of small deformations without external forces are

∇ · ¯̄σ = 0, (17a)
¯̄σ = λs(tr¯̄E)̄̄I + 2μs

¯̄E, (17b)

¯̄E =
1
2

(
∇x + ∇xT

)
, (17c)

where x is the displacement field and for constants λs and μs

can be written as

μs∇2x + (λs + μs)∇(∇ · x) = 0. (18)

In this approach the Lamé constants depend on the Young’s
modulus and Poisson’s ratio, so a variable Young’s modulus
can be used in order to avoid severe mesh deformation in
critical regions, like boundary layers, trailing-edge airfoil,
relegating the mesh deformation to areas where the mesh is
coarse. Exist other alternatives, like employing a distribution
which is inversely proportional to the element volume, in order
to deal with severe fluid mesh deformations. These strategies
can be used to admit large mesh movement while maintaining
good mesh qualities. Additionally, the moving mesh module
of PETSc-FEM has implemented a robust method proposed
by [7], where the mesh motion strategy is defined as an
optimization problem. By its definition this strategy may
be classified as a particular case of an elastostatic problem
where the material constitutive law is defined in terms of
the minimization of certain energy functional that takes into
account the degree of element distortion. Some advantages of
this strategy is its natural tendency to high quality meshes and
its robustness.

The structural part of the coupled computation is provided
by ELPASO a finite element method based software, which
has been used for other couplings like FEM/SBFEM and
FEM/BEM before [12]–[14]. Therefore finite elements are
used to represent the structure for the time domain analysis.
The displacement-based finite element method at an arbitrary
time step can be written as

Mü + Cu̇ + Ku = p (19)

where the vector u represents the nodal displacement u̇ the
nodal velocities and ü the nodal acceleration, and p denotes
the applied nodal forces. Here, M is the mass matrix, C is the
damping matrix and K denotes the stiffness matrix. Rayleigh
damping is introduced by setting up the damping matrix as a
linear combination of mass and stiffness matrix

C = aK + bM. (20)

Consider the time period T divided into n time steps with the
duration Δt = T

n and known initial values for t = 0

u (t = 0) = u0 , (21)
u̇ (t = 0) = u̇0 and (22)
ü (t = 0) = ü0 (23)

the equation of motion can be solved using Newmark
scheme [9]. The values of the next time step can be evaluated
using

un+1 = un + Δtu̇n +
(

1
2
− β

)
Δt2ün + βΔt2ün+1 , (24)

u̇n+1 = u̇n + (1 − γ) Δtün + γΔtün+1 (25)

and
Mün+1 + Cu̇n+1 + Kun+1 = pn+1 . (26)

The parameter β and γ are used to control the method. They
should be defined as follows

γ ≥ 1
2

and (27)

β =
1
4

(
γ +

1
2

)2

. (28)

Further details about ELPASO can be found in the users
manual [4].

III. COUPLING OF FLUID AN STRUCTURE

In this work a partitioned treatment will be used. The
interaction process is carried out through the exchange of
information at the fluid/structure interface in a staggered way.
The structural solver establishes the position and velocity of
the interface, while the fluid solver establishes the pressure
and shear stresses on the interface. The principal advantage
of the partitioned treatment, an the reason because it became
so popular is that existing optimized solvers can be reused
and coupled. The systems to be solved are smaller and
better conditioned than in the monolithic case. However the
disadvantage of this approach is that it requires a careful
implementation in order to avoid serious degradation of the
stability and accuracy. From this basic approach a weak
(Explicit) scheme can be developed, or either a strong
(Implicit) time coupling scheme. Each one of these schemes
will be described below.

During the iterative process three codes CFD
(Computational Fluid Dynamics), CSD (Computational
Structure Dynamics) and CMD (Computational Mesh
Dynamics) are running simultaneously.

The basic scheme proceeds as follows:
i) Transfer the motion of the wet boundary (interface)

of the solid to the fluid problem.
ii) Update the position of the fluid boundary and the

bulk fluid mesh accordingly.
iii) Advance the fluid system and compute new

pressures.
iv) Convert the new fluid pressure (and stress field) into

a structural load.
v) Advance the structural system under the flow loads.
From this basic description two different coupling schemes

can be derived depending on how the prediction of the
structural displacement for updating the position of the fluid
boundary and compute new pressures is made. To proceed
with the description of the scheme we define wn to be the
fluid state vector (ρ, v, p), zn to be the displacement vector
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1 +1

1

1 +1

+1

+11

step( iv-v )

step( i )

st
e

p
( 

ii 
)

step( iii )

Fig. 1. Weak coupling scheme.

(structure state vector), żn the structure velocities and xn the
fluid mesh node positions at time tn.

first advanced using the previously computed structure state
zn and a current estimated value zn+1

p . In this way, a new
estimation for the fluid state wn+1 is computed. Next the
structure is updated using the forces of the fluid from states
wn and wn+1. The estimated state zn+1

p is predicted using
a second or higher order approximation (29), were α0 and
α1 are two real constants. The predictor (29) is trivial if
α0 = α1 = 0, first-order time-accurate if α0 = 1 and
second-order time-accurate if α0 = 1 and α1 = 1/2. This
coupling scheme has been proposed in [5], [10], with good
results in the resolution of aeroelastic problems.

z(n+1)
p = zn + α0Δtżn + α1Δt(żn − żn−1). (29)

Once the coordinates of the structure are known, the
coordinates of the fluid mesh nodes are computed by a CMD
code, which is symbolized as:

xn+1 = CMD(zn+1). (30)

Finally, can be also adopted the strong (implicit) coupling,
which have benefits is term of stability and is comparable with
a monolithic coupling. In this coupling algorithm, the time step
loop is equipped with an inner loop called “stage”, so if the
“stage loop” converges, then a “strongly coupled” algorithm

With this coupling strategy the computational cost increases

1 +1

1

1 +1

+1

+11

step( iv-v )

step( i )

st
e

p
( 

ii 
)

step( iii )

Fig. 2. Strong coupling scheme.

proportionally to the number of stages needed to achieve the
desired error, but also it allows to use large time steps.

At the beginning of each fluid stage there is a computation
of skin normals and velocities. This is necessary due to the
time dependent slip boundary condition for the inviscid case,
((v|Γ − ż|Γ) · n̂ = 0) and also when using a non-slip boundary
condition, where the fluid interface has the velocity of the
moving solid wall, i.e., v|Γ = ż|Γ.

The load vector p applied to the structure is updated in each
time step n

pn = pS + pF . (31)

It is composed as the sum of predefined loads applied on the
structure pS and forces acting on the structure due to the
surrounding pressure field of the fluid pF .

IV. INTERFACE

Both Programs PETSc-FEM and ELPASO are executed at
the same time. A new implemented interface assures the
transfer of informations between these two codes in both
directions. The structural solver ELPASO applies nodal forces
generated by the surrounding fluid to the structure and returns
velocities and displacements to the fluid solver PETSc-FEM.

The concept of named pipes (also known as a FIFO –
first in first out – for its behaviour) is used to permit the
communication and consequently the data transfer between the
different codes. Named pipes are an extension to the traditional
pipe concept on Unix and Unix-like systems, it is one of the
methods of inter-process communication. The concept is also
found in Microsoft Windows, although the semantics differ
substantially. A traditional pipe is ”unnamed” because it exists
anonymously and persists only for as long as the process is
running. A named pipe is system-persistent and exists beyond
the life of the process and must be deleted once it is no
longer being used. Processes generally attach to the named
pipes (usually appearing as a file) to perform inter-process
communication (IPC).

Instead of a conventional, unnamed, shell pipeline, a named
pipeline makes use of the file system. It is explicitly created
using mkfifo() or mknod(), and two separate processes can
access the pipe by name one process can open it as a reader,
and the other as a writer.

To use named pipes for the communication, the
communicating parts of the two programs have to be executed
on the same physical machine. Here the communication is
done by the first process aka rank0. It has to be assured,
that the instances of rank0 are located in the same computer.
Otherwise the communication via named pipe will fail.

Here four different pipes are created to permit coupling
in both directions, which are named adv2str.fifo, str2adv.fifo,
adv2mmv.fifo and mmv2adv.fifo. The first pipe adv2str.fifo
controls the data transfers nodal forces from PETSc-FEM
to ELPASO or CFD to CSD, the second pipe controls the
transfer nodal velocities and displacements from ELPASO to
PETSc-FEM or CSD to CFD. The pipes adv2mmv.fifo and
mmv2adv.fifo are used to synchronise the CFD code with the
CMD code.

is obtained. A schematic diagram is shown in Fig. 2.

In the weak (explicit) coupling (See Fig. 1) the fluid is

A. Named Pipe
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V. NUMERICAL EXAMPLES

The two following numerical examples shown here are
worked out using the weak coupling approach as described

In the first test case is solved a compressible flow around
a flexible beam which is fixed at the bottom, this simple
problem allows to verify the exchange of information between
the codes and simplify the debugging process. The structure is
discretized as a frame using 18 BeamBernoulli12 elements [4].
Those elements have two nodes with six degrees of freedom
each, three for displacements in x, y and z direction and
another tree for rotation around the x, y and z axis, which
leads to a system size of 114 degrees of freedom. All six
degrees of freedom are fixed at the bottom of the domain
(Node 1 and 19). The structural material parameters which

TABLE I
S

E [Nm−2] ν [-] ρ [kgm−3]
2.1E+5 0.3 3900.0

TABLE II
G

A [m2] Ix [m4] Iy [m4] Iz [m4] ]
7.64E-04 8.859E-07 8.01E-07 8.49E-08

The fluid domain is discretized with 40 elements in the x
direction and 15 elements in the y direction with a total of 584
elements. At the inlet is imposed the density and the velocities
in the x and y directions while at the outlet is imposed the
pressure. At the bottom and at the top of the domain is imposed
a slip condition (v · n = 0), while at the interface with the
structure is set a no slip condition (v = 0). The properties of

TABLE III
FLUID PARAMETERS.

ρin [Kg/m3] γ [-] R [J·K/Kg] ν [Pa· s]
1 1.4 1 1E-05

TABLE IV
FLUID PARAMETERS.

pout [Pa] uin [m/s] vin [m/s]
1 2 0

The dimension of the fluid domain and the values of the

The coupled problems behaviour is analysed for a period of
400 seconds, therefore 2000 time steps with a time step length
Δt = 0.2 seconds are computed. Both codes use the same time
step length. The structures initial conditions at t = 0 are set to

Fluid StructureInterface

rho = 1
u = 2
v = 0

p = 1

Fig. 3. Fluid domain and dimensions.

zero. γ and β parameters of the time stepping scheme are set
to 0.5 and 0.25, respectively. To achieve a stable simulation

and b are set to 0.001.

TABLE V
C

PETSc-FEM ELPASO in/output ELPASO u, u̇, p
node id node id line number vector index i

17 1 1 0, 1
35 9 2 48, 49
36 11 3 60, 61
37 10 4 54, 55
38 19 5 108,109
39 12 6 66, 67
40 13 7 72, 73
41 14 8 78, 79
42 15 9 84, 85
43 16 10 90, 91
44 17 11 96, 97
45 18 12 102,103

120 2 13 6, 7
121 3 14 12, 13
122 4 15 18, 19
123 5 16 24, 25
124 6 17 30, 31
125 7 18 36, 37
126 8 19 42, 43

Table V shows the coupling information used by the
programs. Due to the fact, that the ids of the nodes are not
the same, the mapping has to be done. The first column
of the table shows the fluid nodes, which are used for the
coupling. In the second column the corresponding structural
nodes are shown. To exchange the coupling information values
are organized as shown in column three. The position of values
in the system vectors u, u̇, p in the structure solver are listed
in the last column. The two index numbers are related to the
displacement ui, velocity u̇i and force pi components in x and
y direction.

As results of this simulation is shown the magnitude of

it is subjected to the load produced by a fluid flow. After
300 time steps the beam reach an oscillating frequency which
correspond to the natural frequency of the beam coupled with
the fluid. The damping added to the beam plus the damping
of the fluid makes that a stable position were achieved after
1700 time steps.

{0,50,140,240,500,1000} shows the deformation of the beam

in Section III.

A. Two Dimensional Test Case

sused in this example are shown in Tables I and II.

TRUCTURES MATERIAL PARAMETERS

EOMETRICAL PARAMETERS

the fluid and the reference condition are describe in Table III
and Table IV.

boundary conditions is shown in Fig. 3.

a Rayleigh damping is introduced according to (20), here a

OUPLING TABLE OF PETSc-FEM, ELPASO INTERFACE

the displacement at point 1 in the structure (See Fig.3). In
Fig. 4 can be observed the behaviour of the beam when

In Fig. 5 a sequence of images for time steps
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Fig. 4. Magnitude of the displacement at point 1.

and the streamlines of the fluid. In this sequence can be
observed the oscillation of the beam and the effect that it has
over the fluid field, changing the size and position of the vortex
behind the beam.

Fig. 5. Deformations of the beam and streamlines for time steps
{0,50,140,240,500,1000}.

In this test case is solved the fluid field inside a 3D
lid-driven cavity, which has a flexible wall at bottom (z=0). In

in each direction. In the upper face is imposed a velocity in
the x direction with a value of 2 [m/s]. The fluid parameters

To discretize the structure at the bottom PlShell4 elements
are used [4], those have four nodes with six degrees of freedom
each. A discretization with 40×40 elements leads to a system
with 10086 unknowns. On all four edges the six degrees of
freedom of each node are forced to be zero so that the plate
is fixed on its edges. Material parameters are given in table
VI. To achieve a stable simulation a Rayleigh damping is

at the middle of the flexible plate. Due to the Rayleigh
damping is introduced in the plate, the amplitude of the
oscillation is decreasing and converges to a value around
-0.039 [m].

Fig. 6. 3D Lid-driven cavity.

TABLE VI
S

E [Nm−2] ν [-] t [m] ρ [kgm−3]
2.1E+4 0.3 0.01 2000.0

Fig. 7. Displacement Magnitude at the middle of the plate.

steps {0,25,50,150,300,1000} with the deformation of the
plate and the streamlines of the fluid. In this sequence can
be observed how the deformation of the plate modify the fluid
field, changing the size and position of the vortex.

VI. CONCLUSION

The weak (explicit) coupling of both programs works very
well and leads to good results. Further improvements regarding
the coupling like

• implicit coupling to improve stability of the computation
• analysis of real life models to gain the advantage of

parallel computation
• meshes with different resolutions for fluid and structure

domain

are the aim of future work. This includes staff exchange
between the two partners; CIMEC, Santa Fe, Argentina
and Technische Universität Braunschweig, Institut für
Konstruktionstechnik (IK), Germany.

B. Three Dimensional Test Case

Fig. 6 is shown the dimensions and the numbers of cell

are the same that used in the 2D test case (See Table III).

introduced according to(20), here a and b are set to 0.015.
In Fig.7) is plot the displacement magnitude of a point

TRUCTURES MATERIAL PARAMETERS

In Fig. 8 is shown a sequence of images for time
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Fig. 8. Fluid Velocity, plate displacement and streamlines .
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