Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream

Naruemon Prapasuwannakul, Supitcha Boonchai, Nawapat Pengpengpit

Abstract—The aim of this study was to determine physiochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (L*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation.

Keywords—Ice cream, germinated brown rice, coconut pulp, milk, cream.

I. INTRODUCTION

PEOPLE are now more cautious about their diets. There is a global trend towards increased consumption of healthy and functional foods. As a result, there is a great demand for natural organic and reduced fat products. Germinated brown rice (GBR) is currently considered to be a popular health food due to its high nutritional components such as vitamins, minerals, dietary fibers, and essential amino acids and also its bioactive components such as ferulic acid, γ-oryzanol, tocotrienols, and gamma aminobutyric acid (GABA) developed during germination [1]. Previous studies reported that germinated brown rice showed many beneficial effects including anti-hyperlipidemia, anti-hypertension, and reduction in the risk of some chronic diseases, such as cancer, diabetes, cardiovascular disease, and Alzheimer’s disease [2].

Ice cream is a frozen dessert usually made from dairy products such as milk and cream. The structure of ice cream has been identified as a three components foam made up of air bubbles, fat droplets, and ice crystals dispersed in a high viscosity aqueous phase [3]. Disruption or absence of fat globule network could impact the texture of ice cream. Other factors including stabilizer and emulsifier also contribute impact on ice cream texture. It has been shown that stabilizer promote viscosity development and control ice crystal growth [4], [5]. The physical structure of ice cream affects not only melting behavior but also hardness though the mechanism has not been revealed [6].

Green coconut pulp or endosperm of very early maturation stage has been used to replace fat, milk, stabilizer and emulsifier in chocolate ice cream with 93% of sensory approval by panelists. Moreover, it has been revealed that green coconut pulp has foaming and emulsifying capacities that can be used for production of ice cream, even at low pH value [7]. Therefore, the aim of this study was to evaluate the possibility to use green coconut pulp as alternative ingredient in substitution of cream, milk, stabilizer and emulsifier in a high carbohydrate ice cream system in order to produce free milk, low fat, no lactose, and no cholesterol germinated brown rice ice cream.

II. MATERIALS AND METHOD

A. Materials

Germinated glutinous brown rice, produced from Ubolratchathani province, was bought from local supermarket. Green coconuts (Cocos nucifera L.), cultivated and collected from Samutsongkram province, were used in this experiment. Sterilised milk cream (25% fat) and skim milk powder (36% protein) were essential fat and milk solids in making ice cream. Carboxy methyl cellulose (Pre gel, Italy) and glycerol monostearate were used as stabilizer and emulsifier in this study.

B. Preparation of Germinated Brown Rice Juice and Green Coconut Pulp

Germinated glutinous brown rice was cleaned and grounded with water as 1:3 ratio. Then it was filtered through stainless sieve and pasturized at 90°C for 10 minutes. The GBR juice was freshly prepared on the day of ice cream produced. Green coconut fruit was cut, and the endocarp or coconut flesh was separated and grinded with water as 1:3 ratio. The green coconut juice was homogenized with a high pressure homogenizer at 2000 psi. Then it was pasturized at 85°C for 10 minutes, cooled to 10°C and stored at 4°C until be used in experiments. Green coconut pulp or endosperm of very early maturation stage has been used to replace fat, milk, stabilizer and emulsifier in chocolate ice cream with 93% of sensory approval by panelists. Moreover, it has been revealed that green coconut pulp has foaming and emulsifying capacities that can be used for production of ice cream, even at low pH value [7]. Therefore, the aim of this study was to evaluate the possibility to use green coconut pulp as alternative ingredient in substitution of cream, milk, stabilizer and emulsifier in a high carbohydrate ice cream system in order to produce free milk, low fat, no lactose, and no cholesterol germinated brown rice ice cream.

C. Substitution of Milk Cream, Milk Powder, Emulsifier and Stabilizer with Green Coconut Pulp in Ice Cream Process

Five formulations of ice cream were performed. Ice creams were prepared with 50% GBR juice, 13% sucrose, 7.5% milk cream, 29% skim milk powder, 0.2% stabilizer, 0.2% emulsifier, and 0.1% salt. Green coconut pulp was substituted in the cream, skim milk powder, emulsifier and stabilizer in the
formula as shown in Table I. Formulation 1 was the control formula that contained all original ingredients. Other formulations (formulation 2-5), cream and milk powder were totally replaced with green coconut pulp. However, emulsifier, stabilizer, and both emulsifier and stabilizer were not added in formulation 3, 4 and 5 respectively. Liquid ingredients were stirred and heated to 45-50 °C, then the dry ingredients were added. The mixture was pasteurized at 85°C for 5 minutes and homogenized with the blender at maximum speed for 2 minutes. Then it was cooled down and aged at 4 °C for 24 hours and was frozen in an ice cream maker, Nemox Model Gelato Pro 2500, for 15 minutes. The product was further hardened at -20°C in a plastic container. Physicochemical and sensory analyses of ice cream were performed to study the effect of cream, milk, emulsifier and stabilizer replacement with green coconut pulp.

D. Sensory Analyses

Sensory evaluation was conducted by 30 trained taste panelists. The samples were evaluated for color, aroma, flavor, sweetness, smoothness, melting and total acceptability based on 9-point hedonic scale (1=extremely dislike and 9=extremely like). Analysis of variance (ANOVA) was used to determined the statistical difference of the sensory data with a significant level of 95% (α=0.5).

E. Physical Analyses

The overrun of ice cream sample was determined using the following formula [8].

\[
\text{overrun} = \frac{W_1 - W_2}{W_2} \times 100
\]

where \(W_1\) = weight of unit mix; \(W_2\) = weight of same volume of ice cream.

Hardness measurement was obtained at 25°C using a texture analyzer (TAPlus, Lloyd Ltd.,UK) equipped with a 10-mm stainless steel cylinder probe. The penetration speed was 2.0mm/s to a distance of 20mm.

Viscosity of ice cream mix after aging was measured using a viscometer (Brookfield viscometer, Model LVDV-II+, USA) (DV II, Brookfield, USA) equipped with spindle number 1 at 70 rpm.

Color measurements (L* a* b*) of ice cream mix was determined using Spectrophotometer (Color Quest XE, Hunter Lab, USA).

Melting rate of ice cream samples was determined according to Rosalina et al [9]. Ice cream samples (30g, -20°C) were placed on a mesh attached to a cylinder and maintained under controlled temperature at 25°C. The dripped volume was recorded every 10 minutes until all ice cream was melted down to determine the melting rate.

F. Proximate Composition

Green coconut pulp was determined for moisture, ash, protein and lipid contents according to AOAC methods [10]. The carbohydrate content was calculated by the difference. The product with substitution of green coconut pulp and the original true ice cream were determined for protein and lipid contents according to AOAC methods.

III. RESULTS AND DISCUSSION

A. Proximate Composition of Green Coconut Pulp

Proximate composition of green coconut pulp is presented in Table III. Carbohydrate was the major component of the dry pulp. The composition of the pulp in this study varied from that used in chocolate ice cream [11] and ice cream of acid fruit but agreed to other previous study [7]. This variation may due to composition changes during maturation [12]. The higher content of protein, lipid and ash of the pulp in this study indicated that the coconuts in this work were more mature than those used in chocolate ice cream and high acid ice cream.

B. Effect of Milk Cream, Milk Powder, Emulsifier and Stabilizer Replacement with Green Coconut Pulp on Ice Cream Properties

Physical properties of different ice cream formulations are shown in Table III. Viscosity of all ice cream samples with coconut pulp substituted (formula 2-5) were much higher than that of the regular formula (formula 1), and the viscosity of sample formula 2 was highest among all formulations. The high increasing viscosity of these samples might cause by the high content of carbohydrate in the pulp. This result agreed with the previous work reporting that modified starch could promote viscosity development in the aqueous phase [3]. The high viscosity of the samples allowed low air incorporation in the mixes and lead to low overrun. The sample formula 5, which stabilizer and emulsifier were not included, had highest overrun among all formulations. This result might suggest that coconut pulp alone could provide good foaming capability for
ice cream manufacturing. The hardness of all ice cream samples with coconut pulp substituted excluding formula 5 were greater than that of the regular formula. The increasing of hardness might due to more ice crystals produced from water in the pulp (83%). This result agreed to the work indicating that the presence of ice crystals was responsible for the detection of firmness [3]. However, ice cream sample formulation 5 was as soft as the real ice cream. This result might indicate that both emulsifier and stabilizer should be excluded when coconut pulp was applied since coconut pulp itself also had foaming and emulsifying capabilities [7].

TABLE III

PHYSICAL PROPERTIES OF ICE CREAM WITH GREEN COCONUT PULP SUBSTITUTION

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (cp)</td>
<td>192.0</td>
<td>3141.0</td>
<td>2477.5</td>
<td>2378.5</td>
<td>1318.0</td>
</tr>
<tr>
<td>Overrun (%)</td>
<td>16.33</td>
<td>10.63</td>
<td>14.22</td>
<td>12.83</td>
<td>26.56</td>
</tr>
<tr>
<td>Hardness (N)</td>
<td>6.94</td>
<td>22.89</td>
<td>9.64</td>
<td>20.25</td>
<td>5.09</td>
</tr>
<tr>
<td>L*</td>
<td>73.97</td>
<td>67.81</td>
<td>64.32</td>
<td>64.30</td>
<td>58.35</td>
</tr>
<tr>
<td>a*</td>
<td>5.15</td>
<td>3.24</td>
<td>2.61</td>
<td>2.44</td>
<td>2.43</td>
</tr>
<tr>
<td>b*</td>
<td>4.12</td>
<td>4.37</td>
<td>4.47</td>
<td>4.37</td>
<td>4.86</td>
</tr>
</tbody>
</table>

L* = lightness (0-100) a* = redness b* = yellowness
Means with different letters in the same row indicate significant differences (p<0.05)

The melting behavior of different ice cream formulations is presented in Fig. 1. The half life time of melt down was 28, 52, 40, and 50 minute for sample formulation 1, 2, 3, 4 and 5 respectively. The regular formula showed the highest melt down rate while formula 2 showed the slowest melt down rate. The decreasing of melt down rate might due to many factors such as high viscosity, high hardness and low overrun. Small significant difference was observed between formula 2 and 5.

TABLE IV

SENSORY ATTRIBUTES OF ICE CREAM WITH GREEN COCONUT PULP SUBSTITUTION

<table>
<thead>
<tr>
<th>Sensory attributes</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Color **</td>
<td>6.76</td>
</tr>
<tr>
<td>Aroma **</td>
<td>6.43</td>
</tr>
<tr>
<td>Flavor</td>
<td>6.50</td>
</tr>
<tr>
<td>Sweetness **</td>
<td>6.96</td>
</tr>
<tr>
<td>Smoothness **</td>
<td>6.80</td>
</tr>
<tr>
<td>Melting **</td>
<td>6.96</td>
</tr>
<tr>
<td>Total acceptability</td>
<td>7.40</td>
</tr>
</tbody>
</table>

ns indicates no significant differences (p>0.05)

Protein and lipid content of the regular ice cream sample and ice cream substituted with coconut pulp is shown in Table V. The ice cream sample, which milk fat, milk, emulsifier and stabilizer were replaced, contained less fat and protein than those of regular formula because of low protein and lipid content in the pulp. Therefore, the ice cream which coconut pulp substituted is good for health due to its low fat content, no cholesterol, lactose, and chemicals free.

TABLE V

PROTEIN AND LIPID CONTENT OF REGULAR ICE CREAM AND COCONUT PULP SUBSTITUTED ICE CREAM

<table>
<thead>
<tr>
<th>Composition</th>
<th>regular ice cream</th>
<th>Coconut pulp substituted ice cream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>10.44</td>
<td>0.80</td>
</tr>
<tr>
<td>Lipid</td>
<td>2.65</td>
<td>2.01</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Green coconut pulp in this study contains 89% moisture, 1.4% protein, 2.65% lipid, 0.58% ash, and 6.37% carbohydrate. The composition of coconut pulp, with protein, lipid and carbohydrate, made it possible to be used as an alternative ingredient to substitute fat, milk, emulsifier and stabilizer in an ice cream system containing high starch in order to produce healthy ice cream which contains low fat, no lactose, and no cholesterol. Despite the significant difference in physical properties, there is no significant difference for sensory properties between the true regular formula and the pulp substituted formulas.

ACKNOWLEDGMENT

The financial support was provided by the Research and Development Institute, Suan Sunandha Rajabhat University.

REFERENCES

