Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31231
Influence of the Field Type (Mountain and Plain) on the Cupric Status of Lambs

Authors: Mouna Mallem, Majid Tlidjane


The study realized on alive lambs in two different areas mountain and plain in Batna region, aims to demonstrate the possible effect of field type on cupric status of lambs, through evaluation of copper contents in the chain: soil – plant – animal by atomic absorption spectrophotometry. This comparative study also allowed the investigation of the influence of the age and the season. The results obtained show that contents of copper in the soil, forage in the same way as in the plasma of lambs are higher in the plain than in the mountainous area; however, the difference is significant only between the values of feed.

Keywords: Copper, forage, lambs, Plasma copper

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398


[1] CDA (Copper Development Association) Copper in Plant, Animal and Human Nutrition, CDA Publication TN35, 1988, 106 p.
[2] H. H. Oruc, M, Cengiz, A, Beskaya, Chronic copper toxicosis in sheep following the use of copper sulfate as a fungicide on fruit trees, J Vet Diagn Invest. 2009, 21:540–543
[3] L.R. McDowell, Minerals for grazing ruminants in tropical regions In: Extension Bulletin, third ed. Department of Animal , Science, Center for Tropical Agriculture, University of Florida, Gainesville, FL, 1997, pp. 1–81.
[4] L.R. McDowell, Minerals in Animal and Human Nutrition, second ed. Elsevier, Amsterdam, 2003, pp. 235–276.
[5] NRC (National Research Council) Mineral tolerance of animals, National Academy of Sciences, Washington, D.C. 2005, 476 p.
[6] J. R. Todd, Chronic copper toxicity of ruminants. Proc. Nutr. Soc. 1969, 28:189–198.
[7] I. Gharbi, M. Ferrouk, A. Dechicha, Baril, G. ; Beckers, J.F. ; Guetarni, D. Follicular status and embryo production in Ouled Djellal (Algeria) ewes breed pretreated with a GnRH agonist, Journal of Animal and Veterinary Advances, 2012, 11(6), pp. 791-798.
[8] ITEBO (Institut Technique d’Elevage Bovin et Ovin Alger), Les races ovines Algériennes principales caractéristiques, 1996.
[9] F.Z. Afri-Mehennaoui, S. Mehennaoui, Comparaison de trois techniques d'extraction pour la détermination des éléments traces métalliques dans les sédiments de l'oued Rhumel et son affluent l'oued boumerzoug zone urbaine. (Constantine) Sciences & Technologie, 2004, 21, pp.29-38
[10] FAO. , Manuel of methods of analysis for heavy metals in aquatic environment research. Part I: method for detection, measurement and monitoring of water pollution, FAO. Fisheries Technical Paper N° 137, United Nations. 1975.
[11] X.Y. Shen, G.Z. Du, H. Li, Studies of naturally occurring molybdenum-induced copper deficiency in the yak. The Veterinary Journal, 2005,.171, pp. 352-357.
[12] P. Elmer, Analytical methods for atomic absorption spectrometry, The Perkin Elmer Corporation, USA. 1994, 300 P.
[13] M. Lamand, Les oligo-éléments, Dalloz, Ed. Paris, 1978, 78 P.
[14] S. Perigaud, Liaisons carentielles entre sols, végétaux et animaux, 1971, Ann. Nut. Alim. 25, pp. 327-378.
[15] Z.L. He, X.E. Yang, P.J. Stoffella, Trace elements in agroecosystems and impacts on the environment, Biol. Med. Trace Elem. 2005, 19, pp. 125-140.
[16] D. Baize, Éléments traces dans les sols, Fonds géochimiques, fonds pédogéochimiques naturels et teneurs agricoles habituelles : définitions et utilités, 2009, 57, pp. 63-72.
[17] B.D. Tembo, K. Sichilongo, J. Cernak, Distribution of copper, lead, cadmium and zinc concentrations in soils around kabwe town in Zambia. Chemosphere, 2006, 63, pp. 497-501.
[18] D. Caussy, M. Gochfeld, E. Gurzau, C. Neagu, H. Ruedel, Lessons from case studies of metals: investigating exposure, bioavailability, and risk, Ecotoxicol. Env. Safety, 2003, 56, pp. 45-51.
[19] N. Gustavsson, K. Loukola-Ruskeeniemi, M, Tenhola, Evaluation of natural geochemical background levels, Geological Survey of Finland, 2011, Special Paper 49, pp. 237–246.
[20] B.J. Alloway, D.C. Ayres, Chemical Principles of Environmental Pollution. London: Blackie Academic and Professional. 1997,
[21] D.C. Blood, J.A. Henderson, Médecine Vétérinaire, 2ème édition. Vigot Frères Editeurs, Paris, 1976, 1077 P.
[22] M. Lamand, S. Perigaud, J. Bellanger, Enquête sur la fréquence et la répartition géographique des carences en oligo-éléments en France, Cah. Méd. Vét. 1973, 42, pp. 155-175.
[23] E.S. Gurzau, C. Neagu, A.E. Gurzau, Essential metals –case study on iron, Ecotoxicology and Environmental safety, 2003, 56, pp. 190-200.
[24] Z. I. Khan, M. Ashraf, N. Ahmad, K. Ahmad, E.E. Valeem, Availability of nutritional minerals (cobalt, copper, iron, manganese and zinc) in pastures of central Punjab for farm livestock, Pak. J. Bot., 2009, 41(4): 1603-1609.
[25] R. Jarrige, Alimentation des bovins ovins et caprins, Ouvrage collectif –INRA. Edition, Paris, 1988, 476 P.
[26] L. Maach, M. Chadli, Alali, S., Zouagui, Z., F.M. Sysavane, Essai de prévention de l'ataxie enzootique de l'agneau au Maroc. Revue, Méd. Vét. 2000, 151:421-428.
[27] M. Lamand, Carence en oligo-éléments In : «Le veau : Anatomie- Physiologie- Elevage- Alimentation- Production- Pathologie», Mornet, M.; Espinasse, J., et collaborateurs. Maloine, S.A.E. Editeur, Paris, 1977, 407-412.
[28] N.D. Grace, R.G Clark, Trace elements requirements, diagnosis and prevention of deficiencies in sheep and cattle. Physiological aspects of digestion and metabolism in ruminants. Proceedings of the Seventh International Symposium on Ruminant Physiology. Academic, Press. Ed. 1991, 115: 321-346.