Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31435
Organic Contribution on Particles Formed on Pacific Ocean: From Phytoplankton Blooms to Climate

Authors: Petri Vaattovaara, Luke Cravigan, Zoran Ristovski, Marc Mallet, Ari Laaksonen, Sarah Lawson, Nick Talbot, Gustavo Olivares, Mike Harvey, Cliff Law

Abstract:

These SOAP project Pacific Ocean measurements reveal that phytoplankton blooms with sunny conditions make possible secondary organic contribution to ultrafine particles size and composition, and thus on cloud formation ability, and finally on climate. This is in agreement with other biologically active region observations about the presence of secondary organics even the exact fraction is also depending on the local marine life (e.g. plankton blooms, seaweeds, corals). An organic contribution is clearly needed to add to CLAW hypothesis.

Keywords: Climate, marine aerosols, phytoplankton, secondary organics, CLAW hypothesis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092158

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538

References:


[1] Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655-661, 1987.
[2] Vaattovaara, P., Huttunen, P. E., Yoon, Y. J., Joutsensaari, J., Lehtinen, K. E. J., O'Dowd, C. D., and Laaksonen, A.: The composition of nucleation and Aitken mode particles during coastal nucleation events: evidence for marine secondary organic contribution, Atmos. Chem. Physics, 6, 4601-4616, 2006.
[3] Vaattovaara, P., Z.D. Ristovski, M. Graus, M. Muller, S.Sjögren, D. Orsini, C. Leck, and A. Laaksonen. Secondary organic Contribution to particles formed on the ice melted Arctic Ocean. In book: 18thInternational Conference on Nucleation & Atmospheric Aerosol, Prague, Czech Republic, 2009.
[4] Modini, R. L., Ristovski, Z. D., Johnson, G. R., He, C., Surawski, N., Morawska, L., Suni, T., and Kulmala, M.: New particle formation and growth at a remote, subtropical coastal location, Atmos. Chem. Physics Discuss., 9,12101-12139, 2009.
[5] Vaattovaara, P., Räsänen, M., Kühn, T., Joutsensaari, J., and Laaksonen, A.: A method for detecting the presence organic fraction in nucleation mode sized particles, Atmos. Chem. Physics, 5, 3595-3620, 2005.
[6] Johnson, G. R., Ristovski, Z. D., D'Anna, B., and Morawska, L.: Hygroscopic behaviour of partially volatilised coastal marine aerosols using the volatilisation and humidification tandem differential mobility analyser technique, J. Geophys. Res., 110, 10.1029/2004 JD005657, 2005.
[7] Rolph, G.D. (2003). Real-time Environmental Applications and Display sYstem (READY) Website, Silver Spring, MD: NOAA Air Resources Laboratory.
[8] Draxler, R.R. and Rolph, G.D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website(http://www.arl.noaa.gov/ready/hysplit4.html), Silver Spring, MD: NOAA Air Resources Laboratory.
[9] Joutsensaari, J., Vaattovaara, P., Vesterinen, M., Hämeri, K., and Laaksonen, A.: A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles, Atmos. Chem. Physics, 1, 51-60, 2001.
[10] Knutson, E.O. and Whitby, K.T. Aerosol classification by electric mobility: apparatus, theory and applications: Journal of Aerosol Science, 6, 443-451-1975.
[11] Liu,B.Y.H., Pui, D.Y.H., Whitby, K.T., Kittelson, D.B., Kousaka, Y., and McKenzie, R.L. Aerosol mobility chromatograph – new detector for sulphuric-acid aerosols. Atmospheric Environment, 12, 99-104, 1978.
[12] Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons Inc, New York, 1326 pp., 2006.
[13] H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen. Evolution of particle composition in CLOUD nucleation experiments.Atmos. Chem. Phys., 13, 5587-5600, 2013
[14] Vaattovaara, P., Petäjä, T., Joutsensaari, J., Miettinen, P., Zaprudin, B., Kortelainen, A., Heijari, J., Yli-Pirilä, P., Aalto, P., Worsnop, D. R., and Laaksonen, A.: The evolution of nucleation and Aitken-mode particle compositions in a boreal forest environment during clean and pollution-affected new particle formation events, Boreal Environ. Res., 14, 662-682, 2009.
[15] Finlayson-Pitts, B. J., and Pitts Jr, J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, experiments, and applications, Academic Press, San Diego, USA, 969 pp., 2000.
[16] Ristovski, Z. D., Suni, T., Kulmala, M., Boy, M., Meyer, N. K., Duplissy, J., Turnipseed, A., Morawska, L., and Baltensperger, U.: The role of sulphates and organic vapours in new particle formation in a eucalypt forest, Atmos. Chem. Physics, 10, 2919-2010, 2010.
[17] Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., MacDonald, A. M., Ovchinnikov, M., and Strapp, W.: In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II, Anal. Chem., 82, 7943-7951, 2010.