The Contribution of Sulfate and Oxidized Organics in Climatically Important Ultrafine Particles at a Coral Reef Environment
Authors: P. Vaattovaara, H. B. Swan, G. B. Jones, E. Deschaseaux, B. Miljevic, A. Laaksonen, Z. D. Ristovski
Abstract:
In order to investigate the properties of coral reef origin secondary aerosol and especially the contribution of secondary organic aerosol, ethanol affinity to atmospheric nucleation mode particles (diameter<15nm) was measured at the Heron reef marine environment in the South Pacific Ocean during the first coral reef aerosol characterization experiment in May-June 2011 using an ultrafine organic tandem differential mobility analyzer.
Our campaign study at Heron reef showed that the nucleation mode size particles (diameter =10nm) composition contain internally mixed sulfate and oxidized organic components in approximately equal proportion in sunny and still conditions around low tide time, indicating local biogenic sources. The produced secondary compounds and aerosols have potential to contribute to cloud condensation nuclei formation and properties that may affect local low-level cloud formation over the GBR. Additionally, primary marine sea-salt and organic material during windy conditions and anthropogenic/biogenic sources during continental air masses can affect the properties of these particles.
Keywords: Coral reef, DMS, particle composition, secondary organics.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092156
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911References:
[1] IPCC, climate Change 2007: Summary for Policymakers. IPCC WGI Fourth Assessment Report, ed. R. Alley. 2007, Geneva, Switzerland: IPCC.
[2] M. Kulmala and,V.-M. Kerminen, Atmospheric Research, 90, 132-150, 2008.
[3] Vaattovaara, P., Huttunen, P. E., Yoon, Y. J., Joutsensaari, J., Lehtinen, K. E. J., O'Dowd, C. D., and Laaksonen, A.: The composition of nucleation and Aitken mode particles during coastal nucleation events: evidence for marine secondary organic contribution, Atmos. Chem. Physics, 6, 4601-4616, 2006.
[4] Jell, J. S. and Flood, P. G. (1 April 1978) Guide to the Geology of Reefs of the Capricorn and Bunker Groups, Great Barrier Reef Province with special reference to the Heron Reef. Papers, Department of Geology, University of Queensland, 8 3: 1–85 http://espace.library.uq.edu.au/ view/UQ:10881
[5] Bigg, E. K., and Turvey, D. E.: Sources of atmospheric particles over Australia, Atmos. Environ., 12, 1643-1655, 1978.
[6] Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655-661, 1987.
[7] Jones, G. B., and Trevena, A. J.: The influence of coral reefs on atmospheric dimethylsulphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas, Mar. Fresh. Res., 56, 85-93, 2005.
[8] Broadbent, A., and Jones, G.: Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at One Tree Reef lagoon, Environ. Chem, 3, 260-267, 2006.
[9] Modini, R. L., Ristovski, Z. D., Johnson, G. R., He, C., Surawski, N., Morawska, L., Suni, T., and Kulmala, M.: New particle formation and growth at a remote, subtropical coastal location, Atmos. Chem. Physics Discuss., 9, 12101-12139, 2009.
[10] University of Queensland Centre for Marine Studies: Island Research Station. Retrieved 2006-JUL-14.
[11] Fosberg, F.R., Thorne, R.F. and Moulton, J.M. (1961): Heron Island, Capricorn Group, Australia. Atoll Research Bulletin82: 1–16.
[12] Vaattovaara, P., Räsänen, M., Kühn, T., Joutsensaari, J., and Laaksonen, A.: A method for detecting the presence organic fraction in nucleation mode sized particles, Atmos. Chem. Physics, 5, 3595-3620, 2005.
[13] Joutsensaari, J., Vaattovaara, P., Vesterinen, M., Hämeri, K., and Laaksonen, A.: A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles, Atmos. Chem. Physics, 1, 51-60, 2001.
[14] Knutson, E.O. and Whitby, K.T. Aerosol classification by electric mobility: apparatus, theory and applications: Journal of Aerosol Science, 6, 443-451-1975.
[15] Liu,B.Y.H., Pui, D.Y.H., Whitby, K.T., Kittelson, D.B., Kousaka, Y., and McKenzie, R.L. Aerosol mobility chromatograph – new detector for sulphuric-acid aerosols. Atmospheric Environment, 12, 99-104, 1978.
[16] Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons Inc, New York, 1326 pp., 2006.
[17] H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen. Evolution of particle composition in CLOUD nucleation experiments.Atmos. Chem. Phys., 13, 5587-5600, 2013
[18] Vaattovaara, P., Petäjä, T., Joutsensaari, J., Miettinen, P., Zaprudin, B., Kortelainen, A., Heijari, J., Yli-Pirilä, P., Aalto, P., Worsnop, D. R., and Laaksonen, A.: The evolution of nucleation and Aitken-mode particle compositions in a boreal forest environment during clean and pollution-affected new particle formation events, Boreal Environ. Res., 14, 662-682, 2009.
[19] Deschaseaux, E., Jones, G., Miljevic, B., Ristovski, Z., Swan, H., and Vaattovaara, P.: Can corals form aerosol particles through volatile sulphur compound emissions?, The 12th International Coral Reef Symposium, Paper 4A-3 in Water motion, abiotic and biotic processes on coral reefs, 1-5, 2012.
[20] Swan, H. B., Jones, G. B., and Deschaseaux, E.: Dimethylsulfide, climate and coral reef ecosystems, The 12th International Coral Reef Symposium, Paper 4A-5 in Water motion, abiotic and biotic processes on coral reefs 1-5, 2012.
[21] Carpenter, L. J., Hebestreit, K., Platt, U., and Liss, P. S.: Coastal zone production of IO precursors: a 2-dimensional study, Atmos. Chem. Physics, 1, 9-18, 2001.
[22] O'Dowd, C. D., and Hoffman, T.: Coastal new particle formation: a review of current state-of-the-art, Environ. Chem, 2, 245-255, 2005.
[23] Johnson, G. R., Ristovski, Z. D., D'Anna, B., and Morawska, L.: Hygroscopic behaviour of partially volatilised coastal marine aerosols using the volatilisation and humidification tandem differential mobility analyser technique, J. Geophys. Res., 110, 10.1029/2004 JD005657, 2005.
[24] Cainey, J. M., Keywood, M., Grose, M. R., Krummel, P., Galbally, I. E., Johnston, P., Gillett, R. W., Stein, T., Ibrahim, O., Ristovski, Z. D., Johnson, G., Fletcher, C. A., Bigg, E. K., and Gras, J. L.: Precursors to particles (P2P) at Cape Grim 2006: campaign overview, Environ. Chem, 4, 143-150, 2007.
[25] Broadbent, A.D. and G.B. Jones, DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Marine and Freshwater Research, 55(8), 849-855, 2004.
[26] Finlayson-Pitts, B. J., and Pitts Jr, J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, experiments, and applications, Academic Press, San Diego, USA, 969 pp., 2000.
[27] Ristovski, Z. D., Suni, T., Kulmala, M., Boy, M., Meyer, N. K., Duplissy, J., Turnipseed, A., Morawska, L., and Baltensperger, U.: The role of sulphates and organic vapours in new particle formation in a eucalypt forest, Atmos. Chem. Physics, 10, 2919-2010, 2010.
[28] Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., MacDonald, A. M., Ovchinnikov, M., and Strapp, W.: In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II, Anal. Chem., 82, 7943-7951, 2010.
[29] Leahy, SM, Kingsford MJ, and Steinberg, CR., Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the LocalScale. PLoS ONE 8(7): e70400. doi:10.1371/journal.pone.0070400, 2013
[30] Woodhouse, M. T., Mann, G. W., Carslaw, K. S., and Boucher, O.: Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions, Atmos. Chem. Physics, 13, 2723-2733, 10.5194/acp-13-2723-2013, 2013.