Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications
Authors: B. D. Polat, O. Keles
Abstract:
Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating.
In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods is changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nanostructured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods.
Keywords: Cu-Sn thin film, oblique angle deposition, lithium ion batteries, anode.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089186
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126References:
[1] R. Hu, M. Zhu, H. Wang, J. Liu and O. Liuzhang, J. Zou, "Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries.” Acta Materialia, vol. 60, 2012, pp. 4695.
[2] Q. Wang, H. Li, L. Chen and X. Huang,” Novel spherical microporous carbon as anode material for Li-ion batteries” , Solid State Ionics, vol. 152, 2002, pp. 43.
[3] J.C. Arrebola, A. Caballero, J. L. G. Camer, L. Hernen, J. Morales and L. Sanchez, "Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries.” Electrochem. Commun., vol. 11, 2009, pp. 1061.
[4] M. J. Lindsay, G. X. Wang and H. K. Li, "Al-based anode materials for Li-ion batteries.” J. Power Sources, vol. 119, 2003, pp. 84.
[5] M. Wachtler, J. O. Besenhard and M. Winter,” Tin and tin-based intermetallics as new anode materials for lithium-ion cells.” J. Power Sources, vol. 94, 2001, pp. 189.
[6] C. K. Chen, X. F. Zhang and Y. Cui, "High Capacity Li Ion Battery Anodes Using Ge Nanowires.” Nano Letters, vol. 8, 2008, pp. 307.
[7] A. R. Kamali and D. J. Fray, "Tin-based materials as advanced anode materials for lithium ion batteries.” Re. Adv. Mater. Sci,. vol. 27, 2011, pp. 14.
[8] K. -H. Lee, Ph.D Thesis, "Synthesis of Si nanowires for an anode material of Li batteries.”, Pohang University of Science and Technology, Korea, 2007.
[9] J. O. Besenhard, J. Yang and M. Winter, "Will advanced lithium-alloy anodes have a chance in lithium-ion batteries.” J. Power Sources, vol. 68, 1997, pp. 87.
[10] H. Nara, T. Yokoshima, T. Momma and T. Osaka, " Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries.” Energy and Environmental Science, vol. 5, 2012, pp. 6500. .
[11] J. Hassoun, G. Derrien, S. Panero and B. Scrosati, "A SnSb–C nanocomposite as high performance electrode for lithium ion batteries.” Electrochim. Acta, vol. 54, 2009, pp. 4441.
[12] S. Gopukumar, D. H. Gregory, H. -S. Kim and D. Shu, "Lithium-Ion Batteries: Recent Advances and New Horizons.” Inter. J. Electrochem., Article ID: 878416, 2012.
[13] Y. L. Kim, S. J. Lee, H. K. Baik and S. M. Lee, "Sn–Zr–Ag Alloy Thin-Film Anodes.” J. Power Sources, vol. 119, 2003, pp. 106.
[14] H. Yan, S. Sokolov, J. C. Lytle, A. Stein, F. Zhang and W. H. Smyrl, "Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries” J. Electrochem. Soc., vol. 150A, 2003, pp. 1102.
[15] Y. Du, J. Yan, Q. Meng, J. Wang and H. Dai, "Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure” Materials Chemistry and Physics, vol. 133, 2012, pp. 907.
[16] G. Ferrara, C. Arbizzani, L. Damen, M. Guidotti, M. Lazzari, F. G. Vergottini, R. Inguanta, S. Piazza, C. Sunseri and M. Mastragostino, "High-performing Sn–Co nanowire electrodes as anodes for lithium-ion batteries.” J. Power Sources, 211, 103 (2012).
[17] D. Wang, Z. Yang, F. Li, D. Liu, X. Wang, H. Yan and D. He, "Improved performance for lithium-ion batteries with nickel nanocone-arrays supported germanium anode.” Materials Letters, vol. 65, 2011, pp. 1542.
[18] J. Yi, X. Li, S. Hu, W. Li, R. Zeng, Z. Fu and L. Chen, " TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries.” Rare Metals, 30, 589 (2011).
[19] U. G. Nwokeke, R. Alcantara, J. L. Tirado, R. Stoyanova and E. Zhecheva, "The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries.” J. Power Sources, vol. 196, 2011, pp. 6768.
[20] Y. -S. Lin, J. -G. Duh and H. -S. Sheu, "The phase transformations and cycling performance of copper–tin alloy anode materials synthesized by sputtering.” J. Alloys and Compounds, vol. 509, 2011, pp. 123.
[21] K. Robbie, J. C. Sit, and M. J. Brett.,” advanced techniques for glancing angle deposition.” J. Vac. Sci. Technol., 115, B16, (1998).
[22] R. Z. Hu, M. Q. Zeng and M. Zhu, "Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition.” Electrochimica Acta, vol. 54, 2009, pp. 2843.
[23] M. Winter, W. K. Appel, B. Evers, T. Hodal, K. C. Möler, I. Schneider, M. Wachtler, M. R. Wagner, G. H. Wrodning and J. O. Besenhard, "Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries.” Monatshefite für Chemie, vol. 132, 2001, pp. 473.
[24] M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites.” Electrochim. Acta, vol. 45, 1999, pp. 31.