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Abstract—In the recent years, functionaly gradient materials
(FGMs) have gained considerable attention in the high temperature
environment applications. In this paper, free vibration of thin
functionally graded cylindrical shell with hole composed of stainless
steel and zirconia is studied. The mechanical properties vary
smoothly and continuously from one surface to the other according to
a volume fraction power-law distribution. The Influence of shell
geometrical parameters, variations of volume fractions and boundary
conditions on natural frequency is considered. The equations of
motion are based on strains-displacement relations from Love's shell
theory and Rayleigh method. The results have been obtained for
natural frequencies of cylindrical shell with holes for different shape,
number and location in this paper.

Keywor ds—functionally gradient material; Vibration; various
boundary conditions; cylindrical shells;

I. INTRODUCTION

HE functionally graded materids (FGMs) are

microscopically inhomogeneous advanced composites

with mechanical properties that vary continuously
through a given dimension. In recent years, FGMs, especially
metal-ceramic composites, have generated a great deal of
interest in the aerospace community. This is due to their
potential flexibility for usein the structural applications where
extreme thermal, corrosion resistance and high-quality
mechanical properties are required. In addition, FGMs have
been widely used in various fields including electronics,
chemistry, optics, biomedicine, etc. In regards to the material
advances, because of the superior properties of advanced
composite materias, such as specific strength and high
specific stiffness, greater corrosion resistance, greater fatigue
life due to material properties are graded in continuous
direction. However, laminated composite structures exhibit
serious risk of the delamination bonds at their interface of
material layers when they are open to high-temperature
environment. They are also easily affected by buckling, large
amplitudes, and excessive stresses induced by thermal or
combined thermo-mechanical loading.The design idea of
FGMs was first introduced in 1984 by a group of Japanese
materials scientists as a means of preparing thermal barrier
materials [1]. FGMs are usually made by combining different
materials using powder metallurgy methods [2]. Cylindrical
shells also have vast range of applications in engineering and
technol ogy.
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Ootao et a. have carried out studies on volume fraction
optimization for minimizing thermal stresses in FGM hollow
circular cylinder [3]. Kadoli et a. presented information for a
better combination of metal and ceramic for FGM shell and
also the magnitude of power-law index required for better
thermal buckling characteristics [4]. Loy et al. investigated the
free vibration of ssimply supported FGM cylindrical shells [5].
Pradhan et a. have studied vibration characteristics of a
functionally graded cylindrical shell made up of stainless steel
and zirconia for various boundary conditions. Effects of the
boundary conditions and the volume fractions on the shell
frequencies are analyzed [6]. Shah et a. have investigated
vibration frequencies of cylindrical shells with the exponential
volume fraction law [7]. Patel et al. analyzed free vibration of
FGM édlliptical cylindrical shells using Finite Element Method
(FEM) based on higher- order Shear Deformation Theory
(HSDT) [8]. Zhi-yuan and Hau-ning have studied the free
vibration of FGM cylindrical shells with hole. Their analysis
is based on Hamilton's principle[9]. Shahsiah and Eslami used
Sanders nonlinear strain—displacement relation and first-order
shell theory to derive the equilibrium and stability equations
for a functionally graded cylindrical shell [10].In this paper,
the free vibration of a functionally graded cylindrical shell
with hole is considered. Further, effect of the geometrical
parameters, number of holes and the boundary conditions on
the frequency characteristics of the FGM shells are studied.
The anaysis of the functionally graded cylindrical shel is
carried out using Love's shell theory and solved by using
Rayleigh method. The functionaly gradient materia
considered is composed of stainless stedl at the outer surface
and zirconia at the inner surface.

II. MATERIAL MODELS OF FUNCTIONALLY GRADED
MATERIALS

The properties in a FGM shell change through the
thickness, consequently. FGMs can potentialy provide
designers with tailored material response and exceptional
performance in therma environments and their materia
properties are temperature dependent. The material properties

P, can be expressed as a function of temperature [11]

P=P(P,T'+1+PT+P,T? +PT?) ®
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- lll. STRAIN RELATIONS, FORCES AND MOMENTS RESULTMT
Where B,,P,,P,P, and P, are the coefficients of

A cylindrical shell with radiufR , lengthL , thicknessh
nd square hole with dimensiood, d2 (Fig. 2) is
considered for the present analysis. The deformstitefined
controlled by volume fractiond/; and individual material with reference to a coordinate systémﬁ, Z).

temperature T(Kelvin) and are unique to the constituent_
materials. The material propertie®, of FGMs are

propertiesP of the constituent materials.

i
‘ .
Piom = PV, 2) A -
" Z:l F { :l [— E , :| =
Where )
) | Py Vil
V. =1
; fi ) L/2 ‘1 L/2
The volume fraction varies according to a simple/@olaw L
function of the distance from middle surface of tyéndrical
shell as follows, Fig. 2 Cylindrical shell with hole.
V, =((z+ h/2)/h)N (4) For a thin cylindrical shell, plane stress conditids
assumed and the constitutive relation is given by
Where his the cylinder wall thicknesdN is the volume —
4 {0} =[QK ¢ (8)

fraction index, andz is the coordinate in the radial direction

(_ hi2sz<h /2) with origin at the mid-surfaces shown  \yere {0} and {e} represent stress and strain vectors and

in Fig.1
J [Q] is the reduced stiffness matrix. The stress amainst
vectors are defined as
T
{0} ={0,.05.0,} ©
T
{g" ={e..es0) (10)
Where 0, and 0, are the stresses in x arfdirections,
and O, is the shear stress on th&fplane, €, and €, are
the strains in the x anfdirections, ande, , is the shear strain
on the X@ plane. The reduced stiffness matrix is defined as
Fig. 1 Geometry of a cylindrical shell
Qll Q12 0
For a functionally gradient material with two canhsént [Q] =1Q, Q, O (11)
materials, the Young's modylE (., |, Poisson’s ratidy ., |, 0 0 Qg

and mass densitopfgm for the materials M1 (Zirconia) and

M2 (Stainless steel), respectively are expressed as For isotropic materials the reduced stiﬁné@l§ are defined

E g = (E, ~E)).(22+h)/2h)" +E, O e o .E
Usgn = (U, —0,)((22+ ) 120)" +0, @ Ttz T Qe T az)
Pim = (s = p)(@Z+R)I20) 4 p, (D

The materials in outerz=h/2 and innerz=-h/2
surfaces of the cylindrical shell are stainlesslsted zirconia,
respectively. The material properties of FGM cdnstits,

calculated al = BOC(K), are listed in Table 1.
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TABLE |
MATERIAL PROPERTIES OFFGMS FROMREF. [12]

Zirconia Stainless steel
Coefficient p(Kgm'3) v E(Nm_z) p(Kgm_S) v E(Nm_z)
PO 5700 0.2882 2.44E+11 8166 0.3262 2.01E+11
P-1 0 0 0 0 0 0
P1 0 1.13E-04 -1.37E-03 0 -2.00E-04 3.08E-04
P2 0 0 1.21E-06 0 3.80E-07 -6.53E-07
P3 0 0 -3.68E-10 0 0 0
total 5700 0.298 1.68E+11 8166 0.3178 2.08E+11

From Love’s shell theory [13], the components ia #train

vector{e} are defined as A, A, 0 B, B, O
e =€ -2k A12 Azz 0 BlZ Bzz 0
X 1
13 0O 0 A, O O B 21
e, =€, ~ZK, (13) [s]= B B 06 5 b 86 (21)
- 1 2 11 12
So =y 22t B, B, O 0 Dp O
Where€,, €,and y are the reference surface strains and | 0 0 By, O 0 D |

K,, K,and T are the surface curvatures. These surface

strains and curvatures are taken from Love’s ghelbry WhereAi ! Bij and Dii are the extensional, coupling and

bending stiffness, respectively, defined as

fee, y}_{au 1(av+wj 6v+16u} (14)
H 1 1 1 h/2
ox R\ o0& ox Ro& {Aj’Blj’Dij}:J._ Qij{ll21 ZZ}dZ (22)
Pw 1(w )1 ow v 2
k=0 = e b e (15)
o’ R\og 08) Rl o980 ox
IV. ENERGY RELATIONS

The forces and moments resultant expressed in teftne ~ The Rayleigh approach is employed to obtain theatons

stress components through the thickness of motion for a cylindrical shell. The Lagrangiameegy
functional 'l for a shell is defined as the difference between
_ M2 the kinetic and strain energies and is given b
{Nx’ NE” Nx@}__[hlz{ax’aﬁ’axﬁ}dz (16) g g y
_ 2 nm=T,. -U (23)
{M X! M A M xe} - I—h/z{ax' 06’ Jx@}ZdZ (17) Max Max

Substituting Egs. (8) and (13) into Egs. (16) and)( WhergTMAX and U max are the maximum kir.letic an_d st.rain
following constitutive equation is obtained energies, respectively. The general expressionh®rkinetic
energyof a circular cylindrical shell is given by

{N}=[sKe} (18) 2 2

T_1L277 ou . ov .\ a\Nszaj (24)
Where{N}, {8} and [S] are defined as _EJ-O _[0 Pr E E E "
{N}T - {NX’ Ny, Nyg, M. My, M xe} (19) Where 0, is the mass density per unit length defined as
{S}T :{el,ez, VK., K, ,2r} (20) b - I_Zh,odz o5
2
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The strain energy functional is given by

U = % [ 177 e} [sHe}r doox

V. SOLUTION PROCEDURE

Spatial displacement field for a freely vibrating cylindrical
shell with different boundary conditions can be expressed as

(26)

u= Aag—ﬁx)icm(ne)ﬁn(ax) (27)
v =Bg¢(x)Sn(nd)Sn(at) (28)
w = Cg¢(x)Cos(nd)Sn(at) (29)

Where A, B and C are constants dencting the amplitudes of
the vibration in the axia u, circumferentia v and radia w
directions. n and & denote the number of circumferential
waves in mode shape and angular frequency of vibration,

respectively. Further, axial modal function ¢(x) iswritten as

#¥)=C,S n[?] +C,Co Iﬁj +C,S nh(lﬁj + cpm(lﬁj

(30)
Where the values of numbers C;, C,, C; and C,are

associated with the edge conditions described at the shell ends,
and /7 is area number corresponding to the eigenvalues of
the beam function and is related with the axial wave number
(m). Applying physical constraints on the axia displacements
and their derivatives yields the following feasible boundary

conditions specified at theends, X =0 andX =L,

AX) = % =0 (Clamped) (31)
X
2
AX) = ‘;—‘f =0 (Smply Supported) (32)
X
2 3
6_20 = 6_3¢ =0 (Free) (33)
X X

To derive the frequency equation, the Lagrange function is
minimized with respect to the amplitude coefficients A, B, and
C. This leads to a set of three homogeneous simultaneous
equations

= (34)
0A
Performing the minimization as in Eq. (33) yields a set of
equations that can be expressed as follows

Cll C12 C13 A O
C12 C22 C23 B = o (35)
Cl3 C23 C33 C O
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The coefficients C11, C12 . . . C33 for a simply supported
(SS-SS) boundary condition are listed in the Appendix. In
order to solve its non-zero solution, the determinant of

coefficient lCij ] must be zero, the frequency equation can be
obtained as
a,0° +a,wt +a,w’ +a, =0 (36)
Where, a; (i =0, 1, 2, 3) are constants and depend on
material properties (E, U, 0 ), geometrical parameters (R, L, h)

and waves numbers (n, m). Eq. (36) is solved to yield three
natural frequencies. The smallest of the three natural
frequenciesisinterest to the present study.

VI. RESULTSAND DISCUSSIONS

Studies on vibration of FGM cylindrical shell with various
boundary conditions are carried out. Natural Frequency for the
FGM shell with and without hole for four boundary conditions
islisted in Tables 2aand 2b.

TABLE I A.
VARIATION OF NATURAL FREQUENCIES (HZ) AGAINST CIRCUMFERENTIAL
WAVE NUMBER FOR VARIOUS BOUNDARY CONDITIONS
(m=1, h: R: L=1:20:60, N=1)

Boundary conditions

n S-S Cc-C C-S C-F

1 16.171196 22.299541 19.464628 8.3449674
2 8.1702022 12.817861 10.569889 3.8507581
3 6.8004106 9.3559708 7.9774615 5.2233481
4 10.073866 10.981151 10.376087 9.3836409
5 15.509753 15.814426 15.524134 14.998232
6 22.374845 22.479015 22.294655 21.901716
7 30.535261 30.561846 30.417192 30.069811
8 39.962697 39.953862 39.826385 39.497387
9 50.649988 50.622511 50.503518 50.18302
10 62.595081 62.556587 62.442309 62.126216

TABLEB.

VARIATION OF NATURAL FREQUENCIES (HZ) AGAINST CIRCUMFERENTIAL
WAVE NUMBER OF FGM CYLINDRICAL SHELL WITH HOLE FOR VARIOUS
BOUNDARY CONDITIONS (m=1, h: R: L=1:20:60, N=1)

Boundary conditions

n S-S c-C C-S C-F
1 16.261357 22.302244 19.459267 8.3503894
2 8.20965%4 12.818866 10.561945 3.8512663
3 6.8128365 9.3649302 7.9726433 5.222871
4 10.082657 10.982692 10.374538 9.3827253
5 15.519614 15.81508 15.523359 14.996968
6 22.385786 22.479455 22.293768 21.900155
7 30.546852 30.561834 30.416044 30.068017
8 39.974545 39.954881 39.825048 39.495442
9 50.661796 50.62248 50.502126 50.181013
10 62.606663 62.556622 62.440996 62.124233
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In this paper studies are presented on the vibratib and n of the lowest frequency (satnge For the shorter shell

clamped-clamped (C-C) functionally graded (FG)myfical  (jarger7) and the same n is not always increasing with n.
shells. In Fig. 3 illustrate fundamental frequenegrsus

. . . 45 -
aperture ratio B =d,/R) of different FGM shells with 40
middle square hole. It shows that the curve pattedifferent o 35
. . . N b
for different shells. For slender shell (a), thelskith bigger <
hole has the less frequency; and the tubby shelk (everse. g 30 1 o
For middle case (b), frequency is first reduced mudeased g 2 "
then. = 20 n=2
S 15 - == n3
h:R:L =1:20:100 2 10. —on=4
12.8766 - 5 1
g 12.8764 - 0 "
g 12.8762 1 0 02 04 06 08 1 1.2
< n
g 12.876 - R .
= Fig. 4 Fundamental frequency versus length—spém rat
T 12.8758 -
=
8 128756 1 TABLE IIl
12.8754 : . : : : HIGH-FREQUENCY COEFFICIENT WITH RATIO OF LENGHT AND SPARF MIDDLE
SQUARE HOLE
0 0.1 0.2 0.3 0.4 0.5 0.6
B H
m_n 0.025 0.1 0.2 0.4 0.6
(a)
1 1 3.84E-01  4.822721  12.87550  26.02425  33.50546
h:R:L=1:20:80
16.69165 - 2 169E+00 2523638  6.376213 1590966  23.86286
T 1669165 7 3 4773937 4905615  5.971117  11.48642  18.13591
16.69164 -
g 16.69164 4 9150680  9.215393  9.578131  12.12003  16.73229
2 16.69163 - n of
= 1669163 ; lowest ~ _ _ _ _
g 16.69162 requency n=1 n=2 n=3 n=3 n=4
B 16.69162 -
16.69161 : : : ; ; . In Fig. 5 is show fundamental frequency versusaetfiisg
o ot 02 03 04 05 06 span ratio(y: el L) of FGM shell with offset square hole.
b Frequency is first increased and reduced then.
b
( ) h:R:L=1:20:60, p=0.4
h:R:L=1:20:50 25.2 1
26.025 A E 25.15 -
g 26.024 - g 251
3 26.023 - 5 '
=
S 26.022 - £ 25.05 1
E 26.021 - ;
T 2602 - 5 5
8 26019 | 24.95 . ‘ . . .
26.018 T T T T T 1 0 0.1 0.2 0.3 04 0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 elL
B
Fig. 5 Fundamental frequency versus offsetting spa of hole

(©) (m=1, N=1)

Fig. 3 Fundamental frequency versus aperture.rftie-1, N=1) Fundamental frequency versus length-width ratio

Fundamental frequency versus length—span rati@ = d, /d, of FGM shells with middle rectangular hole is

(/7: R/ |_) of FGM shells with middle square hole (shown in Fig. 6. Frequency is first reduced ancrdased
D—=1- _ . . . then. In eneral when rectangular hole being graavexial
h: R=1:20, 8 = 04) for different circumferential wave length frequency is reduced and when will be grdoie

number (n) is shown in Fig. 4. Table 3 gives thkig of & cjrcumferential length frequency is increased.
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h:R:L=1:20:100 ,p=0.4

12.8761 -
12.876 1
12.8759 -
12.8758 -
12.8757 1
12.8756 -
12.8755 1
12.8754 -
12.8753

Natural frequency (Hz)

0 05 1 15 2
@p

Fig. 6 Fundamental frequency versus length-widib & hole
(m=1, N=1)

3
Fundamental frequency coefficient of FGM shell with, N us -B. + D,,

multi-holes is shown in Fig. 7. When the holes ritisited
along circumferential or axial directions, the fuegcy is

increasing with axial hole number. However, wherleho

number is even and holes distributed along circuentféal,
then fundamental frequency is smaller than odd rarrhbles.

35.103 - h:R:L=1:20:30

35.1025 - ® A
35:102 7 ° d,/R=00¢

35.1015 - d,/L=01
35.101

35.1005 A
35.1
35.0995

35.099 | A
35.0985 . .

® axial holes

A circumferencial holes

Natural frequency (Hz)

Holenumber

Fig. 7 Fundamental frequency coefficient of the shth
multi-holes(m=1, N=1)

VII.
In this study, the frequency analysis of thin fimcally

CONCLUSIONS

graded cylindrical shells with hole composed ofrdéss steel
and zirconia has been presentéte equations of motion are

based on Love’s shell theory and solved by Raylengthod.
The maximum coupling stiffness occurs at N equalg &nd
the results are obtained for this power- law indd@ke
influence of radius—span ratio, aperture ratio,setting,
length—width ratio of hole and the numbers of habesthe
natural frequency of functionally graded cylindfichells is
given by the numerical analyses. Results for thdoua
boundary conditions are available (different boumdaf

#Ax)in Egs. (31) to (33)).

APPENDIX
2 2
C, = AM TR | Ah L+,Baf
2L 2R
mn 77 B, B
C., =——— + — 12 _ 66
12 2 A&.Z AEG R R
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_mr B,n°  2B,n®  B,m’7°R
ClS_T _A12+ I; + |6:§ + lle
2 R D 2
szzmn3 A _p,, +Dss JLm
2 2 R R
| Ay, Bzz+ D,, +,Ba22
2 R 2R?
m’n( B D n7t B
C,.= -12_1p8 2766 |4 ™ - 22
23 L 2 66 R 2R A22 R
2R® 2 R
m2n?m n?7t D,.n?
C33 =T(D12 +2D66)+? _Bzz %
2 2
.m m —512+D11m T°R +A2271'+,6’a)2
212 2R
Where
_ TPRL
2
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