Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30308
Synchrotron X-ray based Investigation of Fe and Zn Atoms in Tissue Samples at Different Growth Stages

Authors: Sunil Dehipawala, E. Cheung, P. Schneider, T. Cheung, Todd Holden, Robert Regan, G. Tremberger Jr, D. Lieberman

Abstract:

The zinc and iron environments in different growth stages have been studied with EXAFS and XANES with Brookhaven Synchrotron Light Source. Tissue samples included meat, organ, vegetable, leaf, and yeast. The project studied the EXAFS and XANES of tissue samples using Zn and Fe K-edges. Duck embryo samples show that brain and intestine would contain shorter EXFAS determined Zn-N/O bond; as with the cases of fresh yeast versus reconstituted live yeast and green leaf versus yellow leaf. The XANES Fourier transform characteristic-length would be useful as a functionality index for selected types of tissue samples in various physical states. The extension to the development of functional synchrotron imaging for tissue engineering application based on spectroscopic technique is discussed.

Keywords: Metalloproteins, Fourier transform, EXAFS, XANES

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1326696

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161

References:


[1] Shi W, Chance MR. (2011) Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization Curr Opin Chem Biol. Feb;15(1):144-8.
[2] Ascone I & Strange R. (2009) Biological X-ray absorption spectroscopy and metalloproteomics. J Synchrotron Radiat. 2009 May;16(Pt 3):413- 21.
[3] Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chen LX, Sligar SG. (2008) X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative. Proc Natl Acad Sci U S A. Jun 17;105(24):8179-84.
[4] Liu C, Hong FS, Tao Y, Liu T, Xie YN, Xu JH, Li ZR (2011). The mechanism of the molecular interaction between cerium (III) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Biol Trace Elem Res. Nov;143(2):1110-20. Epub 2010 Oct 30.
[5] Meharenna, Y.T.; Doukov, T.; Li, H.; Soltis, S.M.; Poulos, T.L. "Crystallographic and single-crystal spectral analysis of the peroxidase ferryl intermediate," (2010) Biochemistry 49, 2984-2986.
[6] Corbett, M. C., Latimer, M. J., Poulos, T. L., Sevrioukova, I. F., Hodgson, K. O., and Hedman, B. (2007) Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D Biol Crystallogr 63, 951-960.
[7] Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P. (2009) Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol. Nov;184(3):581-95.
[8] Giachini L, Veronesi G, Francia F, Venturoli G, Boscherini F. (2010) Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J Synchrotron Radiat. Jan;17(1):41-52.
[9] Wang C, Vernon R, Lange O, Tyka M, Baker D. (2010) Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Sci. Mar;19(3):494-506.
[10] Chen J, Zhang H, Tomov IV, Ding X, Rentzepis PM. (2008) Photochemistry and electron-transfer mechanism of transition metal oxalato complexes excited in the charge transfer band. Proc Natl Acad Sci U S A. Oct 7;105(40):15235-40.
[11] Bugaev L, Farges F, Rusakova E, Sokolenko A, Latokha Y, Avakyan L. (2005) Fe coordination environment in Fe(II)- and Fe(III)-silicate glasses via the Fourier-transform analysis of Fe K-XANES. Physica Scripta. Vol. T115, 215-217.
[12] Colangelo CM, Lewis LM, Cosper NJ, Scott RA. (2000) Structural evidence for a common zinc binding domain in archaeal and eukaryal transcription factor IIB proteins J Biol Inorg Chem. Apr; 5(2):276-83.
[13] Wellenreuther G, Parthasarathy V, Meyer-Klaucke W.(2010) Towards a black-box for biological EXAFS data analysis. II. Automatic BioXAS Refinement and Analysis (ABRA). J Synchrotron Radiat. Jan; 17(1):25- 35.
[14] Lancaster WA, Praissman JL, Poole FL 2nd, Cvetkovic A, Menon AL, Scott JW, Jenney FE Jr, Thorgersen MP, Kalisiak E, Apon JV, Trauger SA, Siuzdak G, Tainer JA, Adams MW. (2011) A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data. BMC Bioinformatics. Feb 28;12:64.
[15] Shi W, Punta M, Bohon J, Sauder JM, D'Mello R, Sullivan M, Toomey J, Abel D, Lippi M, Passerini A, Frasconi P, Burley SK, Rost B, Chance MR. (2011) Characterization of metalloproteins by high-throughput Xray absorption spectroscopy. Genome Res. Jun;21(6):898-907.