Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31824
Apoptosis Induced by Low-concentration Ethanol in Hepatocellular Carcinoma Cell Strains and Down-regulated AFP and Survivin Analysis by Proteomic Technology

Authors: Xin Kai, Juan Li, Sexin Huang, Zengliang Bai


Ethanol is generally used as a therapeutic reagent against Hepatocellular carcinoma (HCC or hepatoma) worldwide, as it can induce Hepatocellular carcinoma cell apoptosis at low concentration through a multifactorial process regulated by several unknown proteins. This paper provides a simple and available proteomic strategy for exploring differentially expressed proteins in the apoptotic pathway. The appropriate concentrations of ethanol required to induce HepG2 cell apoptosis were first assessed by MTT assay, Gisma and fluorescence staining. Next, the central proteins involved in the apoptosis pathway processs were determined using 2D-PAGE, SDS-PAGE, and bio-software analysis. Finally the downregulation of two proteins, AFP and survivin, were determined by immunocytochemistry and reverse transcriptase PCR (RT-PCR) technology. The simple, useful method demonstrated here provides a new approach to proteomic analysis in key bio-regulating process including proliferation, differentiation, apoptosis, immunity and metastasis.

Keywords: Hepatocellular carcinoma, Ethanol, Proteomics, survivin and AFP

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777


[1] Llovet, J. M., Burroughs, A., and Bruix, J. (2003). Hepatocellular carcinoma. Lancet, 362, 1907-1917.
[2] Llovet, J. M., and Beaugrand, M. (2003). Hepatocellular carcinoma:present status and future prospects. J Hepatol, 38, 136-149.
[3] McGlynn, K. A., Tsao, L., Hsing, A. W., Devesa, S. S., and Fraumeni, J. F. J. (2001). International trends and patterns of primary liver cancer. Int J Cancer, 94, 290-296.
[4] Seow, T. K., Liang, R. C., Leow, C. K., and Chung, M. C. (2001). Hepatocellular carcinoma,From bedside to proteomics. Proteomics, 1, 1249-1263.
[5] Thorgeirsson, S. S., and Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 31, 339-346.
[6] Leung, T. W., Patt, Y. Z., Lau, W. Y., Ho, S. K., Yu, S. C., et al. (1999). Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res, 5, 1676-1681.
[7] Poon, R. T., Fan, S. T., Lo, C. M., Liu, C. L., and Wong, J. (1999). Intrahepatic recurrence after curative resection of hepatocellular carcinoma, long term results of treatment and prognostic factors. Ann Surg, 229, 216 -222.
[8] Lowe, S. W., and Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21, 485- 495.
[9] Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407, 770-776.
[10] Ghobrial, I. M., Witzig, T. E., and Adjei, A. A. (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin, 55, 178-194.
[11] Denicourt, C., and Dowdy, S. F. (2004). Targeting apoptotic pathway in cancer cells. Science, 305, 1411-1413.
[12] Yim, E. K., Lee, K. H., Namkoong, S. E., Um, S. J., and Park, J. S. (2006). Proteomic analysis of ursolic acid-induced apoptosis in cervical carcinoma cell. Cancer lett, 235, 209-220.
[13] Neo, J. C., Rose, P., Ong, C. N., and Chung, M. C. (2005). beta- Phenylethyl isothiocyanate mediated apoptosis, A proteomic investigation of early apoptotic protein changes. Proteomics, 5, 1075- 1082.
[14] Dong, H., Ying, T., Li, T., Cao, T., Wang, J., et al. (2006). Comparative Proteomic Analysis of Apoptosis Induced by Sodium Selenite in Human Acute Promyelocytic Leukemia NB4 Cells. Journal of Cellular Biochemistry, 98, 1495-1506.
[15] Monge, M., Vilaseca, M., Soto-Cerrato, V., Montaner, B., Giralt, E., and Perez-Tomas, R. (2007). Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant MCF-7 MR cell line. Invest New Drugs, 25, 21-29.
[16] Prince, P., and Mcmillan, T. J. (1990). Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res, 50, 1392-1396.
[17] Yu, L. R., Zeng, R., Shao, X. X., Wang, N., Xu, Y. H., and Xia, Q. C. (2000). Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis, 21, 3058-3068.
[18] Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 4, 982-994.
[19] Yokoo, H., Kondo, T., Fujii, K., Yamada, T., Todo, S., and Hirohashi, S. (2004). Proteomic signature corresponding to alpha fetoprotein expression in liver Cancer cells. Hepatology, 40, 609-617.
[20] Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., Tian, B., et al. (2004). From proteomic analysis to clinical significance, overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics, 3, 73-81.
[21] Ramagli, L. S. (1999). 2-D Proteome Analysis Protocols, Humana Press, Totowa, NJ, USA 99-103.
[22] Liang, R. C., Neo, J. C., Lo, S. L., Tan, G. S., Seow, T. K., and Chung, M. C. (2002). Proteome database of hepatocellular carcinoma. J Chromatogr B Analyt Technol biomed Life Sci, 771, 202-228.
[23] Neuhooff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255-62.
[24] Oertel, J., and Huhn, J. (2000). Immunocytochemical methods in haematology and oncology. J Cancer Res Clin Oncol, 126, 425-440.
[25] Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., et al. (2001). The sequence of human genome. Science, 291, 1304-1351.
[26] Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., et al. (2002). Generation and initial analysis of more than 15000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci, 99, 16899-16903.
[27] Ambrosini, G., Adida, C., and Altieri, D. C. (1997). A noval antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 3, 917-921.
[28] Vilana, R., Bruix, J., Bru, C., Ayuso, C., Sole, M., and Rodes, J. (1992). Tumor size determines the efficacy of percutaneous ethanol injection for the treatment of small hepatocellular carcinoma. Hepatology, 16, 353- 357.
[29] Shiina, S., Tagawa, K., Niwa, Y., Unuma, T., Komatsu, Y., et al. (1993). Percutaneous ethanol injection therapy for hepatocellular carcinoma, results in 136 patients. Am J Roentgenol, 160, 1023-1028.
[30] Redvanly, R. D., Chezmar, J. L., Strauss, R. M., Galloway, J. R., Boyer, T. D., and Bernardino, M. E. (1993). Malignant hepatic tumors, safety of high-dose percutaneous ethanol ablation therapy. Radiology, 188, 283- 285.
[31] Castaneda, F., and Kinne, R. H. K. (2000). Cytotoxicity of milliolar concentrations of ethanol on tumor cell line compared to normal rat hepatocytes in vitro. J Cancer Res Clin Oncol, 126, 505-510.
[32] Castaneda, F., and Kinne, R. H. K. (2001). Apoptosis induced in HepG2 cells by short exposure to millimolar concentrations of ethanol involves the Fas-receptor pathway. J Cancer Res Clin Oncol, 127, 418-424.
[33] Nobuaki, N., Eichhorst, S. T., Muller, M., and Krammer, P. H. (2001). Ethanol-induced apoptosis in hepatoma cells proceeds via intracellular Ca+; elevation activation of TLCK-sensitive proteases, and cytochrome c release. Exp Cell Res, 269, 202-213.
[34] Kurose, I., Higuchi, H., Miura, S., Saito, H., Watanabe, N., et al. (1997). Oxidative stress mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology, 25, 368-378.
[35] Santamaria, E., Munoz, J., Fernandez-Irigoyen, J., Prieto, J., and Corrales, F. J. (2007). Toward the discovery of new biomarkers of hepatocellular carcinoma by proteomics. Liver Int, 27, 163-173.
[36] Feng, J. T., Shang, S., and Beretta, L. (2006). Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene, 25, 2810-2817.
[37] Chignard, N., and Beretta, L. (2004). Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology, 127, 120-125.
[38] Guo, L., Eisenman, J. R., Mahomkar, R. M., Peschon, J. J., Paxton, R. J., et al. (2002). A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol cell proteomics, 1, 30-36.
[39] Falini, B., and Mason, D. Y. (2002). Protein encoded by genes involved in chromosomal alterations in lymphoma and leukemia, clinical value their detection by immunocytochemistry. Blood, 99, 409-426.
[40] Tanke, H. J., Dirks, R. W., and Raap, T. (2005). FISH and immunocytochemistry, towards visualising single target molecules in living cells. Curr Opin Biotechnol, 16, 49-54.
[41] Mizejewski, G. J. (2001). Alpha-fetoprotein structure and function, relevance to isoforms, epitopes, and conformational variants. Exp Biol Med, 226, 377-408.
[42] Dudich, E., Semenkova, L., Gorbatova, E., Dudich, I., Khromykh, L., et al. (1998). Growth-regulative activity of human alpha-fetoprotein for different types of tumor and normal cells. Tumour Biol, 19, 30-40.
[43] Li, M. S., Ma, Q. L., Chen, Q., Liu, X. H., Li, P. F., et al. (2005). Alphafetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J Gastroenterol, 11, 2564-2569.
[44] Walczak, H., and Krammer, P. H. (2000). The CD95 (APO-1/Fas) and the TRAIL(APO-2L) Apoptosis systems. Exp Cell Res, 256, 58-66.
[45] Altierti, D. C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 22, 8581-8589.
[46] Duffy, M. J., O-Donovan, N., Brennan, D. J., Gallagher, W. M., and Ryan, B. M. (2007). Survivin, a promising tumor biomarker. Cancer lett, 249, 49-60.
[47] Chious, S. K., Jones, M. K., and Tarnawski, A. S. (2003). Survivin - an anti-apoptosis protein, its biological roles and implications for cancer and beyond. Med Sci Monit, 9, 125-129.
[48] Conway, E. M., Pollefeyt, S., Steiner-Mosonyi, M., Luo, W., Devriese, A., et al. (2002). Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathway. Gastroenterology, 123, 619-631.
[49] Sah, N. K., Khan, Z., Khan, G. J., and Bisen, P. S. (2006). Structural, functional and therapeutic biology of survivin. Cancer Lett, 244, 166- 171.