Molecular Electronic Devices based on Carotenoid Derivatives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Molecular Electronic Devices based on Carotenoid Derivatives

Authors: Vicente F. P. Aleixo, Augusto C. F. Saraiva, Jordan Del Nero

Abstract:

The production of devices in nanoscale with specific molecular rectifying function is one of the most significant goals in state-of-art technology. In this work we show by ab initio quantum mechanics calculations coupled with non-equilibrium Green function, the design of an organic two-terminal device. These molecular structures have molecular source and drain with several bridge length (from five up to 11 double bonds). Our results are consistent with significant features as a molecular rectifier and can be raised up as: (a) it can be used as bi-directional symmetrical rectifier; (b) two devices integrated in one (FET with one operational region, and Thyristor thiristor); (c) Inherent stability due small intrinsic capacitance under forward/reverse bias. We utilize a scheme for the transport mechanism based on previous properties of ¤Ç bonds type that can be successfully utilized to construct organic nanodevices.

Keywords: ab initio, Carotenoid, Charge Transfer, Nanodevice

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332700

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624

References:


[1] A. Aviram, M.A. Ratner, "Molecular Rectifier" Chemical Physics Letters 29, 277 (1974).
[2] H. Sirringhaus, N. Tessler, R.H. Friend, "Integrated Optoelectronic Devices Based on Conjugated Polymers", Science 280, 1741 (1998).
[3] M. Macucci, G. Iannaccone, J. Greer, J. Martorell, D.W.L. Sprung, A. Schenk, I.I. Yakimenko, K.-F. Berggren, K. Stokbro, N. Gippius, "Status and Perspectives of Nanoscale Device Modeling", Nanotechnology 12, 136 (2001).
[4] M. Forshaw, R. Stadler, D. Crawley, K. Nikolic, "A short review of nanoelectronic architectures", Nanotechnology 15, S220 (2004).
[5] A. Saraiva-Souza, R.M. Gester, M.A.L. Reis, F.M. Souza, J. Del Nero, "Design of a Molecular ¤Ç-Bridge Field Effect Transistor (MBFET)". Journal of Computational and Theoretical Nanoscience. 5, 2243-2246, (2008).
[6] F. Kong, X.L. Wu, G.S. Huang, Y.M. Yang, R.K. Yuan, C.Z. Yang,P.K. Chu, G.G. Siu, "Optical emission from nano-poly
[2-methoxy-5-(2'-ethylhexyloxy)- p-phenylene vinylene] arrays", Journal of Applied Physics 98, 074304 (2005).
[7] M. Lee, H.E. Katz, C. Erben, D.M. Gill, P. Gopalan, J.D. Heber, D.J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer", Science 298, 1401 (2002).
[8] S. Sivaramakrishnan, P.-J. Chia, Y.-C. Yeo, L.-L. Chua, P.K.-H. Ho, "Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters", Nature Materials 6, 149 (2007).
[9] M. Hamedi, R. Forchheimer, O. Inganas, "Towards woven logic from organic electronic fibres", Nature Materials 6, 357 (2007).
[10] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols", Nature Materials 6, 497 (2007).
[11] N.B. Zhitenev, A. Sidorenko, D.M. Tennant, R.A. Cirelli, "Chemical modification of the electronic conducting states in polymer nanodevices", Nature Nanotechnology 2, 237 (2007).
[12] R. W. Wood, "A New Form of Cathode Discharge and the Production of X-Rays, together with Some Notes on Diffraction", Phys. Rev. 5, 1-10 (1897).
[13] R. A. Millikan and Carl F. Eyring, "Laws Governing the Pulling of Electrons out of Metals by Intense Electrical Fields", Phys. Rev. 27, 51- 67 (1926).
[14] B. S. Gossling, "The emission of electrons under the influence of intense electric fields," Philos. Mag. 1, 609-635, (1926).
[15] J. He, F. Chen, J. Li, O.F. Sankey, Y. Terazono, C. Herrero, D. Gust, T.A. Moore, A.L. Moore, S.M. Lindsay, "Electronic Decay Constant of Carotenoid Polyenes from Single-Molecule Measurements", J. Am. Chem. Soc. 127, 1384-1385 (2005).