
 

 

  
Abstract—Heterogeneity has to be taken into account when 

integrating a set of existing information sources into a distributed 
information system that are nowadays often based on Service-
Oriented Architectures (SOA). This is also particularly applicable to 
distributed services such as event monitoring, which are useful in the 
context of Event Driven Architectures (EDA) and Complex Event 
Processing (CEP). Web services deal with this heterogeneity at a 
technical level, also providing little support for event processing. Our 
central thesis is that such a fully generic solution cannot provide 
complete support for event monitoring; instead, source specific 
semantics such as certain event types or support for certain event 
monitoring techniques have to be taken into account. Our core result 
is the design of a configurable event monitoring (Web) service that 
allows us to trade genericity for the exploitation of source specific 
characteristics. It thus delivers results for the areas of SOA, Web 
services, CEP and EDA. 
 

Keywords—ECA, CEP, SOA, and Web services.  

I. INTRODUCTION 
HE world is nowadays distributed and heterogeneous and 
so are information systems that are often collections of 

existing information sources. Technical integration of 
heterogeneous sources is today reasonably supported by 
Enterprise Service Bus (ESB) systems (e.g. Apache 
ServiceMix), which usually support Web services [6]. 
However, Web services provide general support only and do 
not or take only quite limited source specific semantics into 
account. Not only does this apply to WS-* standards such as 
WS-Notification or WS-BPEL, but also to work on Complex 
Event Processing (CEP) systems [5] such as Esper [2]. For 
this reason, our objective is to enhance Web services by 
mechanisms that allow us to add event source specific 
application semantics. Thus we provide work in the area of 
Event Driven Architectures (EDA) [5] combined with work 
for (Web) Service-Oriented Architectures (SOA) [4].  

Our key aim is to provide a particular flexibly configurable 
event monitoring service, which accepts source heterogeneity 
for a (Web) services environment. By configurable, we mean 
that we are able to generate code templates at compile time 

 
Arne Koschel is with the Department of Computer Science, Faculty IV, 

University of Applied Sciences and Arts, Ricklinger Stadtweg 120, 30459 
Hannover, Germany  (phone: +49 511 9296 1839; fax: +49 511 9296 1810; e-
mail: Arne.Koschel@gmx.de).  

Irina Astrova  is with the Institute of Cybernetics, Tallinn University of 
Technology,  Akadeemia tee 21, 12618 Tallinn, Estonia (e-mail: 
irinaastrova@yahoo.com). 

and to provide dynamic parameterization of parts of the 
service. Moreover, several configuration options for full 
Event–Condition–Action (ECA) rule processing, e.g., parallel 
rule engines are part of our work. 

To allow for well defined semantics, our event passing 
follows as far as possible semantics, which were developed 
for well established EDA systems. In particular, we propose 
the semantics from Active Database Management System 
(ADBMS) style ECA rules [1]. Our monitoring (Web) 
services extend earlier work on ECA rule based active 
information delivery [13] in heterogeneous information 
systems, which was limited in flexibility as well as 
performance and was developed for CORBA [7] only.  

II. RELATED WORK 
Work related to ours is mainly found in the areas of event 

monitoring techniques, Web services themselves, ADBMSs, 
distributed ECA rules, and workflow systems. 

A. Event Monitoring Techniques 
Event monitoring techniques are well understood for 

(distributed) monitoring systems (see [10] and [11] for 
overviews) and can contribute general monitoring principles 
to our work. These systems mainly concentrate on primitive 
(mostly pure) event sources, such as operating system level 
signals, in contrast to our work, which is concerned with event 
sources that are typically found in heterogeneous information 
systems.  

B. Web Services 
Web services themselves today provide us with a solid 

basis, but lack support for source specific event monitoring. 
As mentioned, WS-BPEL and similar rule techniques are just 
relatively generic in their approaches.  

C. ADBMSs 
ADBMSs offer several elements for use in our work (see 

[1] and [8] for overviews). Event monitoring techniques in 
ADBMSs are partially useful, but concentrate mostly on 
monitoring ADBMS internal events, and tend to neglect 
external and heterogeneous event sources. For the design of 
interfaces to our monitoring service, namely those for 
notifiable and monitored objects, we follow similar design 
patterns [3]. 

A major contribution of ADBMSs is the well defined and 
proven semantics for definition and execution of ECA rules. 

Event Monitoring Web Services for 
Heterogeneous Information Systems 

Arne Koschel, and Irina Astrova 

T 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2312International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
1/

pd
f



 

 

This leads to general classifications for parameters and 
options in ADBMS core functionality [1]. Building upon these 
proven results, we capture options that are relevant to event 
monitoring in our general event model, especially event type, 
event binding and event processing semantics. However, since 
ADBMSs mostly do not concentrate on heterogeneity (and 
distribution), our work extends those done for ADBMSs and 
CEP/EDA into these directions. 

D. Distributed ECA Rules 
Some systems combine the worlds of monitoring and ECA 

rule processing together, and partially take some heterogeneity 
and distribution from real life information systems into 
account. RIMM [9] concentrates on reactive mechanisms for 
database interoperability, but only describes a simple event 
and ECA rule model with very limited semantics. In the ECA 
rules of the NCL/NIIIP approach [12] only method event 
types are supported. This takes no event source specifics into 
account. The Amalgame project [15] and the 
WHIPS/TSIMMIS project [14] use ECA rules to support data 
integration and view materialization in a warehousing 
environment. To this end, they only need simple ECA rules, 
which monitor a single source and update derived 
information. Some of the primitive event monitoring 
techniques of WHIPS/TSIMMIS seem to meet our needs. 
Both Amalgame and TSIMMIS take some source specific 
semantics into account, but on the other hand, they have not 
been developed with an eye towards Web services. 

E. Workflow Systems 
Workflow systems are at a higher level than ours. They 

could utilize our work for the event monitoring of resources.  
As a conclusion, what is missing in all the above 

approaches is a monitoring service, which does accepts 
heterogeneity and is designed for a Web services 
environment. There is no approach, which combines 
configurable WSDL based event type specification, 
monitoring interfaces, a classification scheme and algorithms 
for monitoring heterogeneous sources together with flexible 
dynamically parameterized definition of event types. 
Moreover, there is only a partially discussion on techniques 
and implementation aspects. To overcome these deficiencies, 
the goal of our work is to address this combination of aspects 
in event monitoring service. 

III. EVENT MONITORING (WEB) SERVICES 
Our work addresses the following problems: 

1) Description (and detection) of arbitrary event types from 
heterogeneous sources. 

2)  Utilization of source category specific implementation 
support for event monitoring. 

3) Examination of the supportable degree for parameters 
from ECA rules such as event occurrence notification 
time (after, before, instead) or event–granularity 
(instance/set–oriented). 

The main results of our work are as follows: 

1) Development of a WSDL–based, configurable and 
extensible event type model for arbitrary event sources.  

2) Flexible event type descriptions using either direct coded 
WSDL event types or WSDL as an event description 
language, or a (simple) meta-model (name/value lists). 

3) Provision of the WSDL specification of the service 
interfaces, which each monitored_object in the 
system has to be implemented. 

4)  Contribution of a classification scheme, which 
categorizes event sources by their specific 
implementation support for monitoring (see Fig. 1). 

5) Implementation techniques for monitoring event sources 
from several categories are examined. 

6) Compile time configurability of event monitors is 
achieved by generation of monitoring technique specific 
code templates. 

7) Discussion of event semantics from ECA rule parameters 
that each of the monitoring techniques is able to support. 

To illustrate our work, we will give implementation 
examples of three sources from our event source classification 
scheme in Fig. 1.  

 

 
Fig. 1 Classification: Monitoring Support 

 
A. Event Sources with Triggers and Callbacks  
Let’s suppose an event source, which supports triggers and 

callbacks (here an Oracle DBMS) (see Fig. 2). The system 
allows the communication between Oracle sessions by means 
of pipes. A pipe is a data structure, into which messages may 
be placed and from where they may be retrieved in FIFO 
order. For retrieval, a recipient process registers with the pipe. 
The recipient then reads one message from the pipe, processes 
it, and reads the next message. If the pipe is empty, the 
recipient will block. It becomes unblocked, after a new 
message has been placed in the pipe. Note that a message in a 
pipe becomes immediately visible independently of the status 
of the transaction that placed it there.  

Now suppose that an event type is defined for the source, 
say insertion of a tuple into some relation. The wrapper 
declares a corresponding trigger which, when fired, places a 
message with all relevant information into the pipe. The 
wrapper thread then acts as the recipient, and hands the event 
– with negligible overhead – over to an appropriate receiver 
service. 

Furthermore, it shows that our implementation flexibly 
allows for dynamic specification of event types to be 
monitored. 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2313International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
1/

pd
f



 

 

 
Fig. 2 Monitoring: Triggers and Callbacks 

 

B. Event Sources with Internal Triggers and Polling 
Next, let’s suppose that a source allows only triggers with 

purely database internal effects (see Fig. 3). This somehow 
requires a solution that simulates the above pipe and writes 
trigger results to an externally visible structure, e.g., a mirror 
table. 

As before, if an event type is defined, a corresponding 
trigger will be declared. As its action, it places a description of 
the event in the mirror table. E.g., if the source is a relational 
DBMS the mirror table may now be queried like any other 
relation by suitable SQL statements. Because of lack of a 
callback mechanism, the wrapper thread must poll the mirror 
table to detect any new events, and read and delete the 
corresponding tuple (if any).  

Of course, the mirror table has the disadvantage of space 
and time overhead compared to callbacks. An unsuitable 
polling frequency easily results in either large delays in event 
detection or – if it is too high – the overhead may become 
unbearable. At least, there is a guarantee that no events are 
lost. 

 

 
Fig. 3 Monitoring: Triggers and Polling 

 

C. Protocolled Event Sources 
Protocolled event sources write a trace of all their actions 

into a log file (see Fig. 4). The log file is then served as the 
above mirror table. Of course, the log file must also be polled 
to determine whether events of a given type occurred. Since 
all actions are protocolled, careful inspection of the log file 
ensures that no event will be lost. 

Mail systems or DBMSs are typical protocolled sources. A 
single log file might result in large time overhead because 
events are indiscriminately recorded no matter whether they 
have been defined to be of interest or not. If a source allows 
us to freely declare log files, a new file may be created with 
each definition of a new event type. This will reduce time 
overhead, but induce space overhead. 

 

 
Fig. 4 Monitoring: Protocolled event sources 

 

REFERENCES   
[1] ACT-NET Consortium. The Active DBMS Manifesto. ACM SIGMOD 

Record, 25(3), 1996. 
[2] EsperTech. Esper Reference Documentation, version 2.0.0. Technical 

Report. Available: http://esper.codehaus.org/ 
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. 

Addison-Wesley Publishing Company, 1995. 
[4] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented 

Architecture Best Practices. Prentice Hall, 2005. 
[5] D. Luckham. The Power of Events: An Introduction to Complex Event 

Processing in Distributed Enterprise Systems. Addison-Wesley 
Longman, 2002. 

[6] E. Newcomer and G. Lomow. Understanding SOA with Web Services. 
Addison-Wesley, 2004. 

[7] Object Management Group. CORBA Home Page. Technical Report, 
Object Management Group, Inc. (OMG). Available: 
http://www.corba.org/ 

[8] N. W. Paton, editor. Active Rules for Databases. Springer, New York, 
1999. 

[9] M. Young. The Technical Writers Handbook.  Mill Valley, CA: 
University Science, 1989. 

[10] B. Schroeder. On-Line Monitoring: A Tutorial. IEEE Computer, 
28(6):72–80, June 1995. 

[11]  S. Schwiderski. Monitoring the Behavior of Distributed Systems. PhD 
thesis, Selwyn College, University of Cambridge, University of 
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996. 

[12] S. Su, H. Lam, T. Yu, S. Lee, and J. Arroyo. On Bridging and Extending 
OMG/IDL and STEP/EXPRESS for Achieving Information Sharing and 
System Interoperability. In Proc. 5th Annual Express User Group Int. 
Conf. (EUG), Grenoble, France, October 1995. 

[13] G. v. Bultzingsloewen, A. Koschel, and R. Kramer. Active Information 
Delivery in a CORBA-based Distributed IS. K. Aberer and A. Helal, 
editors, In 1st IFCIS CoopIS. IEEE CS Press, 1996. 

[14] J. Widom. Research Problems in Data Warehousing. In Proc. 4th Int. 
Conf. Information and Knowledge Management (CIKM), November 
1995. 

[15] G. Zhou, R. Hull, R. King, and J. Franchitti. Supporting Data Integration 
and Warehousing Using H2O. Data Engineering, 18(2):29–40, June 
1995. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008 

2314International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

81
1/

pd
f




