Effects of Allelochemical Gramine on Metabolic Activity and Ultrastructure of Cyanobacterium Microcystis aeruginosa
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Effects of Allelochemical Gramine on Metabolic Activity and Ultrastructure of Cyanobacterium Microcystis aeruginosa

Authors: Y. Hong, H. Y. Hu, A. Sakoda, M. Sagehashi

Abstract:

In this study, inhibition of Microcystis aeruginosa by antialgal alleochemical gramine, was studied by analyzing algal metabolic activity (represented by esterase and total dehydrogenase activities) and cell ultrastructure (showing morphological and ultrastructure alterations using transmission electron microscopy and DNA ladder analysis). After gramine exposure, esterase and total dehydrogenase activities were increased firstly but decreased later. In contrast with the controls, the cells exposed to gramine showed apparent ultrastructure alterations with thylakoids in breakage, phycobilins in decrease, lipid and cyanophycin granules abundant firstly but dissolved afterwards, DNA in fragementation. The occurrence of increase of metabolic activity and specific granules reflected that the resistance of cellular response to gramine was initiated. DNA fragementation associated with the increase of metabolic activity and specific granules hinted that gramine caused M. aeruginosa cells to initiate some morphotype of programmed cell death.

Keywords: Allelochemical, gramine, metabolic activity, Microcystis aeruginosa, ultrastructure.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1059659

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737

References:


[1] E. L. Rice, Allelopathy. 2nd ed. London: Academic Press, 1984.
[2] C. H. Kong, P. Wang, C. X. Zhang, M. X. Zhang, and F. Hu, "Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa," Weed Res., vol. 46, pp. 290-295, 2006.
[3] G. Mulderij, E. Van Donk, and J. G. M. Roelofs, "Differential sensitivity of green algae to allelopathic substances from Chara," Hydrobiologia, vol. 491, pp. 261-271, 2003.
[4] J. H. Shao, Z. X. Wu, G. L. Yu, X. Peng, and R. H. Li, "Allelpathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (cyanobacteria): From views of gene expression and antioxidant system," Chemosphere, vol. 75, pp. 924-928, 2009.
[5] G. Aliotta, A. Molinaro, P. Monaco, G. Pinto, and L. Previtera, "Three biologically active phenylpropanoid glucosides from Myriophyllum verticillatum," Phytochemistry, vol. 31, no. 1, pp. 109-111, 1992.
[6] S. Nakai, S. Yamada, and M. Hosomi. "Anti-cyanobacterial fatty acids released from Myriophyllum spicatum," Hydrobiologia, vol. 543, pp. 71-78, 2005.
[7] F. M. Li, and H. Y. Hu, "Isolation and characterization of a novel antialgal allelochemical from Phragmites communis," Appl. Environ. Microbiol., vol. 71, no. 11, pp. 6545-6553, 2005.
[8] W. H. Sun, S. W. Yu, S. Y. Yang, B. W. Zhao, Z. W. Yu, and H. L. Wu, S. Y. Huang, and C. S. Tang, "Allelochemicals from root exudates of water hyacinth (Eichhornis crassipes)," Acta Photophysiol. Sin., vol. 19, no. 1, pp. 92-96, 1993. (in Chinese)
[9] Y. Hong, H. Y. Hu, A. Sakoda, and M. Sagehashi, "Isolation and characterization of antialgal allelochemicals from Arundo donax L.," Allelopathy J., vol. 25, no. 2, pp. 357-368, Mar. 2010.
[10] Y. Hong, Growth-control characteristics of allelochemicals from aquatic macrophytes on harmful algae
[PhD dissertation], Beijing: Tsinghua Univeristy, 2008. (in Chinese)
[11] Y. Hong, H. Y. Hu, X. Xie, A. Sakoda, M. Sagehashi, and F. M. Li, "Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa," Aquat. Toxicol., vol. 91, no. 3, pp. 262-269, Feb. 2009.
[12] F. M. Li, and H. Y. Hu, "Allelopathic effects of different macrophytes on the growth of Microcystis aeruginosa," Allelopathy J., vol. 15, pp. 145-151, 2005.
[13] K. Yoshida, E. Igarashi, M. Mukai, K. Hirata, and K. Miyamoto, "Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid," Plant Cell Environ., vol. 26, pp. 451-457, 2003.
[14] P. L. Steponkus, and F. O. Lanphear, "Refinement of the triphenyl tetrazolium chloride method of determining cold injury," Plant Physiol., vol. 42, pp. 1423-1426, 1967.
[15] H. C. Louise, M. E. David, and N. L. Alan, "Assessing root death and root system dynamics in a study of grape canopy pruning," New Phytol., vol. 147, pp. 171-178, 2000.
[16] A. Pollio, G. Pinto, R. Ligrone, and G. Aliotta, "Effects of the potential allelochemical ╬▒-asarone on growth, physiology and ultrastructure of two unicellular green algae," J. Appl. Phycol., vol. 5, pp. 395-403, 1993.
[17] J. T. Wu, L. L. Kuo-Huang, and J. Lee, "Algicidal effect of Peridinium bipes on Microcystis aeruginosa," Curr. Microbiol., vol. 37, no. 4, pp. 257-261, 1998.
[18] M. J. Liu, Z. Wang, H. X. Li, R. C. Wu, Y. Z. Liu, and Q. Y. Wu, "Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells," Toxicol. Appl. Pharma., vol. 194, pp. 141-155, 2004.
[19] S. B. Ning, H. L. Guo, L. Wang, and Y. C. Song, "Salt stress induces programmed cell death in prokaryotic organism Anabaena," J. Appl. Microbiol., vol. 93, pp. 15-28, 2002.
[20] D. J. Franklin, and J. A. Berges. "Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness," Proc. R. Soc. London Ser. B. Biol. Sci., vol. 271, pp. 2099-2107, 2004.
[21] A. M. Schrazi, and P. S. Muir, "In vitro effect of formaldehyde on Douglas fir pollen," Plant Cell Environ., vol. 21, pp. 341-346, 1998.
[22] W. Y. Liang, K. Wang, Q. Y. Ruan, and J. L. Wang, "Viability determination of Microcystis aeruginosa by TTC-dehydrogenase assay," Acta Sci. Circumst., vol. 28, no. 9, pp. 1745-1750, 2008.
[23] M. M. Allen, F. Hutchison, and P. J. Weathers, "Cyanophycin granule olypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308," J. Bacteriol., vol. 141, pp. 687-693, 1980.
[24] J. J. Huang, N. H. Kolodny, J. T. Redfearn, and M. M. Allen, "The acid stress response of the cyanobacterium Synechocystis sp strain PCC 6308. Arch. Microbiol., vol. 177, no. 6, pp. 486-493, 2002.
[25] S. K. Mehta, and J. P. Gaur, "Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris," New Phytol., vol. 143, no. 2, pp. 253-259, 2002.
[26] G. A. Codd, and W. D. P. Stewart, "Polyhedral bodies and ribulose 1,5-diphosphate carboxylase of the blue-green alga Anabaena cylindrica," Planta, vol. 130, no. 3, pp. 323-326, 1976.
[27] D. Y. Lee, and G. Y. Rhee, "Circadian rhythm in growth and death of Anabaena flos-aquae (cyanobacteria)," J. Phycol., vol. 35, pp. 694-699, 1999.