Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31107
The role of pH on Cr(VI) Reduction and Removal by Arthrobacter Viscosus

Authors: B. Silva, H. Figueiredo, I. C. Neves, T. Tavares


Arthrobacter viscosus biomass was used for Cr(VI) biosorption. The effect of pH on Cr(VI) reduction and removal from aqueous solution was studied in the range of 1-4. The Cr(VI) removal involves both redox reaction and adsorption of metal ions on biomass surface. The removal rate of Cr(VI) was enhanced by very acid conditions, while higher solution pH values favored the removal of total chromium. The best removal efficiency and uptake were reached at pH 4, 72.5 % and 12.6 mgCr/gbiomass, respectively.

Keywords: Chromium, Reduction, biosorption

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276


[1] M. Gavrilescu, "Removal of heavy metals from the environment by biosorption - a review", Engineering Life Science, vol. 4 (3), pp. 219- 232, 2004.
[2] U. K. Garg, M. P. Kaur, V. K. Garg and D. Sud, "Removal of hexavalent chromium from aqueous solution by agricultural waste biomass", Journal of Hazardous Materials, vol. 140, pp. 60- 68, 2007.
[3] T. L. Kalabegishvili, N. Y. Tsibakhashvili and H.-Y. N. Holman, "Electron spin resonance study of chromium(V) formation and decomposition by basalt-inhabiting bacteria", Environmental Science and Technology, vol.37, pp. 4678-4684, 2003.
[4] N. Y. Tsibakhashvili, L. M. Mosulishvili, T. L. Kalabegishvili, E. I. Kirkesali, M. V. Frontasyeva, E. V. Pomyakushina, S. S. Pavlov and H.- Y. N. Holman, "ENAA studies of chromium uptake by Arthrobacter oxydans", Journal of Radioanalytical and Nuclear Chemistry, vol. 259 (3), pp. 527-531, 2004.
[5] D. Mohan and C. U. Pittman Jr., "Activated Carbons and Low-Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water: A Review", Journal of Hazardous Materials B, vol. 137, pp. 762-811, 2006.
[6] B. Silva, H. Figueiredo, C. Quintelas, I. C. Neves and T. Tavares, "Zeolites as supports for the biorecovery of hexavalent and trivalent chromium", Microporous and Mesoporous Materials, article in press, doi: 10.1016/j.micromeso.2008.05.015, 2008.
[7] S. Deng and R. Bai, "Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms", Water Research, vol. 38, pp. 2424-2432, 2004.
[8] S. S., Ahluwalia and D. Goyal, "Microbial and plant derived biomass for removal of heavy metals from wastewater", Bioresource Technology, vol. 98, pp. 2243-2257, 2007.
[9] Y. Sa─ƒ and T. Kutsal, Biosorption of heavy metals by Zooglodea ramigera: use of adsorption isotherms and a comparison of biosorption characteristic, The Chemical Engineering Journal, vol. 60, pp. 181-188, 1995.
[10] M. X. Loukidou, A. I. Zouboulis, T. D. Karapantsios and K. A. Matis, "Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae", Colloids and Surfaces A, vol. 242, pp. 93-104, 2004.
[11] J. R. Duncan, D. Brady and A. Stoll, "Biosorption of heavy metal cations by non viable yeast cells", Environmental Technology, vol. 15, 429-438, 1994.
[12] M .M. Urrutia, General Bacterial Sorption Processes. London, Taylor and Francis Publishers, 1997, pp. 39-66.
[13] N. V. Asatiani, M. K. Abuladze, T. M. Kartvelishvili, N. G. Bakradze, N. A. Sapojnikova, N. Y. Tsibakhashvili, L. V. Tabatadze, L. V. Lejava, L. L. Asanishvili and H-Y. Holman, "Effect of chromium(VI) action on Arthrobacter oxydans", Current Microbiology, vol. 49, pp. 321-326, 2004.
[14] H. Figueiredo, B. Silva, M. M. M. Raposo, A. M. Fonseca, I. C. Neves, C. Quintelas and T. Tavares, "Immobilization of Fe(III) complexes of pyridazine derivatives prepared from biosorbents supported on zeolites", Microporous and Mesoporous Materials, vol. 109, pp. 163-171, 2008.
[15] B. Silva, H. Figueiredo, C. Quintelas, I. C. Neves and T. Tavares, "Iron and Chromium Removal from Binary Solutions of Fe(III)/Cr(III) and Fe(III)/Cr(VI) by Biosorbents Supported on Zeolites", Materials Science Forum, vol. 587-588, pp. 463-467, 2008.
[16] D. Park, Y.-S. Yun and J. M. Park, "Reduction of Hexavalent Chromium with the Brown Seaweed Ecklonia Biomass", Environmental and Science Technology", vol. 38, pp. 4860-4864, 2004.
[17] D. Park, Y.-S. Yun, J. H. Jo and J. M. Park, "Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger", Water Research", vol. 39, pp. 533-540, 2005.
[18] D. Park, Y.-S. Yun, C. K. Ahn and J. M. Park, "Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass", Chemosphere, vol. 66, pp. 939-946, 2007.
[19] D. Park, Y.-S. Yun, J. Y. Kim and J. M. Park, "How to study Cr(VI) biosorption: Use of fermentation waste for detoxifying Cr(VI) in aqueous solution", Chemical Engineering Journal", vol. 136, pp. 173- 179, 2008.
[20] R. Say, A. Denizli and M. Y. Ar─▒ca, "Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium", Bioresource Technology, vol. 76, pp. 67-70, 2001.
[21] M. Ziagova, G. Dimitriadis, D. Aslanidou, X. Papaioannou, E. L. Tzannetaki and M. Liakopoulou-Kyriakides, "Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures", Bioresource Technology, vol. 98, pp. 2859-2865, 2007.
[22] V. Murphy, H. Hughes, P. McLoughlin, "Comparative study of chromium biosorption by red, green and brown seaweed biomass", Chemosphere, vol. 70, pp. 1128-1134, 2008.
[23] D. Eaton, L. S. Clesceri, A. E. Greenberg, Standard methods for the examination of water and wastewater. Washington, American Public Health Association (APHA), 1995.