I-Vague Groups

Zelalem Teshome Wale

Abstract—The notions of I-vague groups with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalize the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0, 1]. Moreover, various operations and properties are established.

Keywords—Involutary dually residuated lattice ordered semigroup, I-vague set and I-vague group.

I. INTRODUCTION

The notion of fuzzy groups defined by A. Rosenfeld[13] is the first application of fuzzy set theory in Algebra. Since then a number of works have been done in the area of fuzzy algebra.

The vague sets of W. L. Gau and D. J. Buehrer[6] and G. L. Gau[9] are I-vague sets which are categorically equivalent to the class of MV-algebras of C. C. Chang[4] and well studied offer a natural generalization of the notion of vague groups with membership and non-membership functions taking values in an involutary DRL-semigroup promises a unified study of vague sets. In this paper using the definition of I-vague sets, we define a dually residuated lattice ordered semigroup in a DRL-semigroup if and only if

Definition 2.1: [14] A system $A = (A, +, \leq , -)$ is called a dually residuated lattice ordered semigroup (in short DRL-semigroup) if and only if

i) $A = (A, +)$ is a commutative semigroup with zero "0";

ii) $A = (A, \leq)$ is a lattice such that $a + (b \cup c) = (a + b) \cup (a + c)$ and $a + (b \cap c) = (a + b) \cap (a + c)$ for all $a, b, c \in A$;

iii) Given $a, b \in A$, there exists a least x in A such that $b + x \geq a$, and we denote this x by $a - b$ (for a given a, b this x is uniquely determined);

iv) $(a - b) \cup 0 + b \leq a \cup b$ for all $a, b \in A$;

v) $a - a \geq 0$ for all $a \in A$.

Theorem 2.2: [14] Any DRL-semigroup is a distributive lattice.

Definition 2.3: [19] A DRL-semigroup A is said to be involutory if there is an element $i(\neq 0)$ (0 is the identity w.r.t. +) such that

i) $a + (1 - a) = 1 + 1$;

ii) $1 - (1 - a) = a$ for all $a \in A$.

Theorem 2.4: [15] In a DRL-semigroup with 1, 1 is unique.

Theorem 2.5: [15] If a DRL-semigroup contains a least element x, then $x = 0$. Dually, if a DRL-semigroup with 1 contains a largest element a, then $a = 1$.

In his thesis Z. Teshome[19] studied the concept of I-vague sets. In this paper using the definition of I-vague sets, we defined and studied I-vague groups where I is an involutor DRL-semigroup. In this paper we shall recall some basic results in [14], [15], [19] without proof. Moreover, notation, terminology and results of [19] are used in this paper. Throughout this paper, we shall denote the identity element of a group G by e and the order of an element x of G by O(x). Moreover, for $x \in G$, $x < x$ denotes the cyclic group generated by x.

Zelalem Teshome: Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia.

e-mail: zelalentemw@yahoo.com

Manuscript received October xx, 2011; revised January 11, 2007.

II. PRELIMINARIES

Definition 2.8: [19] An I-vague set $A = (t_A, f_A)$ of G is an I-vague set with membership and non-membership functions taking values in an involutary DRL-semigroup if and only if

i) $A = (t_A, f_A)$ is a commutative semigroup with zero "0";

ii) $A = (t_A, f_A)$ is a lattice such that $a + (b \cup c) = (a + b) \cup (a + c)$ and $a + (b \cap c) = (a + b) \cap (a + c)$ for all $a, b, c \in A$.

Definition 2.9: [19] The interval $[t_A(x), 1 - f_A(x)]$ is called the I-vague value of $x \in G$ and is denoted by $V(x)$.

Definition 2.10: [19] Let $B = \{a_1, b_1\}$ and $B_2 = \{a_2, b_2\}$ be two I-vague values. We say $B_1 \geq B_2$ if and only if $a_1 \geq a_2$ and $b_1 \geq b_2$.

Definition 2.11: [19] An I-vague set $A = (t_A, f_A)$ of G is said to be contained in an I-vague set $B = (t_B, f_B)$ of G written as $A \subseteq B$ if and only if $t_A(x) \leq t_B(x)$ and $f_A(x) \geq f_B(x)$ for all $x \in G$. A is said to be equal to B written as $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$.
Definition 2.12: [19] An I-vague set A of G with $V_A(x) = V_A(y)$ for all $x, y \in G$ is called a constant I-vague set of G.

Definition 2.13: [19] Let A be an I-vague set of a nonempty set G. Let $A_{(\alpha, \beta)} = \{x \in G : V_A(x) \geq \alpha, \beta\}$ where $\alpha, \beta \in I$ and $\alpha \leq \beta$. Then $A_{(\alpha, \beta)}$ is called the (α, β) cut of the I-vague set A.

Definition 2.14: [19] Let $S \subseteq G$. The characteristic function of S denoted as $\chi_S = (t_{\chi_S}, f_{\chi_S})$, which takes values in I is defined as follows:

$$t_{\chi_S}(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

and

$$f_{\chi_S}(x) = \begin{cases} 0 & \text{if } x \in S \\ 1 & \text{otherwise}. \end{cases}$$

χ_S is called the I-vague characteristic set of S in I. Thus

$$V_{\chi_S} = \{1, 1\} \text{ if } x \in S; \{0, 0\} \text{ otherwise.}$$

Definition 2.15: [19] Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be I-vague sets of a set G.

(i) Their union $A \cup B$ is defined as $A \cup B = (t_{A \cup B}, f_{A \cup B})$ where $t_{A \cup B}(x) = t_A(x) \lor t_B(x)$ and $f_{A \cup B}(x) = f_A(x) \lor f_B(x)$ for each $x \in G$.

(ii) Their intersection $A \cap B$ is defined as $A \cap B = (t_{A \cap B}, f_{A \cap B})$ where $t_{A \cap B}(x) = t_A(x) \land t_B(x)$ and $f_{A \cap B}(x) = f_A(x) \land f_B(x)$ for each $x \in G$.

Definition 2.16: [19] Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be I-vague values. Then

(i) $\sup(B_1, B_2) = \sup\{a_1, a_2, \sup\{b_1, b_2\}\}$.

(ii) $\inf(B_1, B_2) = \inf\{a_1, a_2, \inf\{b_1, b_2\}\}$.

Lemma 2.17: [19] Let A and B be I-vague sets of a set G. Then $A \cup B$ and $A \cap B$ are also I-vague sets of G.

Let $x \in G$. From the definition of $A \cup B$ and $A \cap B$ we have

(i) $V_{A \cup B}(x) = \inf\{V_A(x), V_B(x)\}$.

(ii) $V_{A \cap B}(x) = \inf\{V_A(x), V_B(x)\}$.

Definition 2.18: [19] Let I be complete and $\{A_i : i \in \Delta\}$ be a non empty family of I-vague sets of G where $A_i = (t_{A_i}, f_{A_i})$. Then

(i) $\bigwedge_{i \in \Delta} A_i = (\bigwedge_{i \in \Delta} t_{A_i}, \bigvee_{i \in \Delta} f_{A_i})$.

(ii) $\bigvee_{i \in \Delta} A_i = (\bigvee_{i \in \Delta} t_{A_i}, \bigwedge_{i \in \Delta} f_{A_i})$.

Lemma 2.19: [19] Let I be complete. If $\{A_i : i \in \Delta\}$ is a non empty family of I-vague sets of G, then $\bigwedge_{i \in \Delta} A_i$ and $\bigvee_{i \in \Delta} A_i$ are I-vague sets of G.

Definition 2.20: [19] Let I be complete and $\{A_i : \{A_{1i}, A_{2i} : i \in \Delta\}$ be a non empty family of I-vague sets of G. Then for each $x \in G$,

(i) $\sup\{V_{A_i}(x) : i \in \Delta\} = \bigwedge_{i \in \Delta} t_{A_i}(x), \bigvee_{i \in \Delta} (1 - f_{A_i}(x))$.

(ii) $\inf\{V_{A_i}(x) : i \in \Delta\} = \bigvee_{i \in \Delta} t_{A_i}(x), \bigwedge_{i \in \Delta} (1 - f_{A_i}(x))$.

III. I-VAGUE GROUPS

Definition 3.1: Let G be a group. An I-vague set A of a group G is called an I-vague group of G if

(i) $V_A(xy) \geq \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$ and

(ii) $V_A(x^{-1}) \geq V_A(x)$ for all $x \in G$.

Lemma 3.2: If A is an I-vague group of a group G, then $V_A(x) = V_A(x^{-1})$ for all $x \in G$.

Proof: Since A is an I-vague group of G, $V_A(x^{-1}) \geq V_A(x)$ for all $x \in G$. Therefore $V_A(e) \geq V_A(x)$ for all $x \in G$.

Lemma 3.3: If A is an I-vague group of a group G, then $V_A(e) \geq V_A(x)$ for all $x \in G$.

Proof: Let $x \in G$.

$V_A(e) = V_A(xx^{-1}) \geq \inf\{V_A(x), V_A(x^{-1})\} = V_A(x)$ for all $x \in G$. Therefore $V_A(e) \geq V_A(x)$ for all $x \in G$.

Lemma 3.4: Let $m \in Z$. If A is an I-vague group of a group G, then $V_A(x^m) \geq V_A(x)$ for all $x \in G$.

Proof: Let $m \in Z$. We prove that $V_A(x^m) \geq V_A(x)$ for all $x \in G$. Since $V_A(e) \geq V_A(x)$ for all $x \in G$ by lemma 3.3, the statement is true for $m = 0$.

First we prove that the lemma is true for positive integers by induction.

Since $V_A(x) \geq V_A(e)$, it is true for $m = 1$.

Assume it is true for m.

Thus $V_A(x^{m+1}) \geq \inf\{V_A(x^m), V_A(x)\} = V_A(x)$. Therefore $V_A(x^m) \geq V_A(x)$.

Consequently, $V_A(x^m) \geq V_A(x)$ for all $x \in G$ and for every integer m. Hence the lemma follows.

Lemma 3.5: A necessary and sufficient condition for an I-vague set A of a group G to be an I-vague group of G is that $V_A(xy^{-1}) \geq \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$.

Proof: Let A be an I-vague set of G. Suppose that $V_A(xy^{-1}) \geq \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$. Let $x \in G$.

Then $V_A(e) = V_A(xx^{-1}) \geq \inf\{V_A(x), V_A(x^{-1})\} = V_A(x)$. Thus $V_A(e) \geq V_A(x)$ for all $x \in G$.

Therefore $V_A(x^m) \geq V_A(e)$ for each $x \in G$.

Let $x, y \in G$. Then

$V_A(xy) = V_A((x^2y^{-1})^{-1}) \geq \inf\{V_A(x), V_A(y^{-1})\}$

$\geq \inf\{V_A(x), V_A(y)\}$. Hence

$V_A(xy) \geq \inf\{V_A(x), V_A(y)\}$ for each $x, y \in G$, so A is an I-vague group of G.

Conversely, suppose that A is an I-vague group of G. Let $x, y \in G$. Then

$V_A(xy) \geq \inf\{V_A(x), V_A(y^{-1})\} = \inf\{V_A(x), V_A(y)\}$. Therefore $V_A(xy^{-1}) \geq \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$.

Hence the theorem follows.

Lemma 3.6: Let H be a subgroup of G and $[\gamma, \delta] \subseteq [\alpha, \beta] \subseteq I$ where $\alpha \leq \beta$ and $\gamma \leq \delta$. Then the I-vague set A of G defined by

$$V_A(x) = \begin{cases} [\alpha, \beta] & \text{if } x \in H \\ [\gamma, \delta] & \text{otherwise} \end{cases}$$

is an I-vague group of G.

Proof: Let H be a subgroup of G. We prove that the I-vague set A defined above is an I-vague group of G.
Let $x, y \in G$. If $xy^{-1} \in H$, then $V_A(xy^{-1}) = [\alpha, \beta]$.

Hence $V_A(xy^{-1}) \geq \inf \{V_A(x), V_A(y)\}$.

If $xy^{-1} \notin H$, then either $x \notin H$ or $y \notin H$.

Thus, $\inf \{V_A(x), V_A(y)\} = \{\gamma, \delta\}$. It follows that $V_A(xy^{-1}) \geq \inf \{V_A(x), V_A(y)\}$. Hence $V_A(xy^{-1}) \geq \inf \{V_A(x), V_A(y)\}$ for every $x, y \in G$.

Therefore A is an I-vague group of G.

Example: Consider the group $(Z, +)$. Let I be the unit interval $[0, 1]$ of real numbers. Let $a \oplus b = \min \{1, a + b\}$.

With the usual ordering (I, \oplus, \leq), $-I$ is an involutary DRL-semigroup.

Define the I-vague set A of G as follows:

$$V_A(x) = \begin{cases} [a_1, b_1] & \text{if } x \in 4\mathbb{Z}; \\ [a_2, b_2] & \text{if } x \in 2\mathbb{Z} - 4\mathbb{Z}; \\ [a_3, b_3] & \text{otherwise} \end{cases}$$

where $[a_3, b_3] = [a_2, b_2] \leq [a_1, b_1]$ and $a_i, b_i \in [0, 1]$ for $i = 1, 2, 3$. Then A is an I-vague group of G.

We prove that $V_A(xy^{-1}) \geq \inf \{V_A(x), V_A(y)\}$ for all $x, y \in G$.

(i) If $xy^{-1} \in 4\mathbb{Z}$, then $V_A(xy^{-1}) = [a_1, b_1] \geq \inf \{V_A(x), V_A(y)\}$.

(ii) If $xy^{-1} \in 2\mathbb{Z} - 4\mathbb{Z}$, then there exist $x, y \in Z$ such that $x \notin 4\mathbb{Z}$ or $y \notin 4\mathbb{Z}$. This implies $\inf \{V_A(x), V_A(y)\} \leq [a_2, b_2] = V_A(xy^{-1})$.

(iii) If $xy^{-1} = x - y$ is odd, then one of them must be odd. Hence $\inf \{V_A(x), V_A(y)\} = [a_3, b_3] \leq a(x^{-1})$.

Therefore A is an I-vague group of G.

Lemma 3.7: Let $H \neq \emptyset$ and $H \subseteq G$. The I-vague characteristic set of H, χ_H, is an I-vague group of G iff H is a subgroup of G.

Proof: Suppose that H is a subgroup of G. By Lemma 3.6, χ_H is an I-vague group of G.

Conversely, suppose that χ_H is an I-vague group of G.

We show that H is a subgroup of G. Let $x, y \in H$. Then $V_H(xy^{-1}) \geq \inf \{V_H(x), V_H(y)\} = [1, 1]$. Hence $V_H(x^{-1}) = [1, 1]$. So $x^{-1} \in H$. Therefore H is a subgroup of G. Hence the lemma follows.

Lemma 3.8: If A and B are I-vague groups of a group G, then $A \cap B$ is also an I-vague group of G.

Proof: Let A and B be I-vague groups of G.

Then $A \cap B$ is an I-vague set of G by lemma 2.17. Now we show that $V_{A \cap B}(xy^{-1}) \geq \inf \{V_{A \cap B}(x), V_{A \cap B}(y)\}$ for each $x, y \in G$.

Let $x, y \in G$. Then $V_{A \cap B}(xy^{-1}) = \inf \{V_A(xy^{-1}), V_B(xy^{-1})\}$.

Thus $V_{A \cap B}(xy^{-1}) \geq \inf \{V_{A \cap B}(x), V_{A \cap B}(y)\}$ for every $x, y \in G$. Therefore $A \cap B$ is an I-vague group of G.

Lemma 3.9: Let I be complete. If $\{A_i : i \in \Delta\}$ is a non empty family of I-vague groups of G, then $\bigcap_{i \in \Delta} A_i$ is an I-vague group of G.

Proof: Let $A = \bigcap_{i \in \Delta} A_i$. Then A is an I-vague set of G by lemma 2.19.

Now we prove that $V_A(xy^{-1}) \geq \inf \{V_A(x), V_A(y)\}$ for every $x, y \in G$. Let $x, y \in G$. Then $V_A(xy^{-1}) = V \bigcap_{i \in \Delta} A_i(xy^{-1})$.

Thus $V_A(xy^{-1}) \geq \inf \{V_{A \cap B}(x), V_{A \cap B}(y)\}$ for all $x, y \in G$. Hence $A \cap B$ is an I-vague group of G.

Theorem 3.11: An I-vague set A of a group G is an I-vague group of G if and only if for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.

Proof: Let A be an I-vague set of G.

Suppose that A is an I-vague group of G. We prove that $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.

Let $x, y \in A_{(\alpha, \beta)}$. Then $V_A(x) \geq [\alpha, \beta]$ and
Theorem 3.12: Let \(A \) be an I-vague group of a group \(G \).

If \(V_A(xy^{-1}) = V_A(x) \) for \(x, y \in G \), then \(V_A(x) = V_A(y) \).

Proof: Suppose that \(V_A(xy^{-1}) = V_A(x) \) for \(x, y \in G \).

\[
V_A(x) = V_A(ce) = V_A(xy^{-1}y) \supseteq \text{inf}(V_A(xy^{-1})), \ V_A(x) = \text{inf}(V_A(x), V_A(y)) = V_A(y).
\]

Thus \(V_A(x) \geq V_A(y) \).

Therefore \(V_A(x) = V_A(y) \).

Hence the theorem follows.

The following example shows that the converse of the preceding theorem is not true.

Example: Let \(I \) be the unit interval \([0, 1]\) of real numbers. Define \(\oplus = \min \{1, a + b\} \). With the usual ordering \((I, \oplus, \leq, -)\) is an involutory DRL-semigroup.

Consider \(G = (Z, +) \) and \(H = (3Z, +) \). Let \(A \) be the I-vague group of \(G \) defined by

\[
A(x) = \left\{ \begin{array}{ll}
\left[\frac{1}{2}, 1 \right] & \text{if } x \in H ; \\
0 & \text{otherwise.}
\end{array} \right.
\]

Let \(x = 2 \) and \(y = 1 \). Then \(A(x) = V_A(y) = [0, \frac{3}{2}] \) but \(A(xy^{-1}) = V_A(2 - 1) = V_A(1) = [0, \frac{3}{2}] \neq A(0) \).

Theorem 3.13: Let \(A \) be an I-vague group of a group \(G \) and \(x \in G \). Then \(V_A(xy) = V_A(x) \) for all \(y \in G \) iff \(V_A(x) = V_A(e) \).

Proof: Let \(A \) be an I-vague group of a group \(G \) and \(x \in G \).

Suppose that \(V_A(xy) = V_A(x) \) for all \(y \in G \) and \(V_A(x) = V_A(e) \).

We prove that \(V_A(xy) = V_A(x) \) for all \(y \in G \).

For any \(y \in G \), \(V_A(xy) \subseteq V_A(x) \).

\[
V_A(xy) \supseteq \text{inf}(V_A(x), V_A(y)) = V_A(y).
\]

Hence \(V_A(xy) \supseteq V_A(y) \).

Similarly, \(V_A(xy) \subseteq V_A(x) \).

Thus \(V_A(xy) = V_A(x) \) and \(V_A(xy) = V_A(y) \).

The converse follows.

Theorem 3.14: Let \(A \) be an I-vague group of a group \(G \).

Then \(GVA = \{ x \in G : V_A(x) = V_A(e) \} \) is a subgroup of \(G \).

Proof: Let \(A \) be an I-vague group of a group \(G \). Since \(e \in GVA \), \(GVA \neq \emptyset \) and \(GVA \subseteq G \). Let \(x, y \in GVA \). We prove that \(x^{-1} \in GVA \).

\[
V_A(xy^{-1}) \supseteq \text{inf}(V_A(x), V_A(y)) = V_A(e).
\]

Thus \(V_A(xy^{-1}) \supseteq V_A(x) \) and \(V_A(xy^{-1}) \supseteq V_A(y) \).

Therefore \(GVA \) is a subgroup of \(G \).

Lemma 3.15: Let \(A \) be an I-vague group of a group \(G \).

If \(x < y \), then \(V_A(y) \leq V_A(x) \).

Proof: Suppose that \(x < y \). Then \(x \in L \). It follows that \(x = y^{-m} \) for some \(m \in Z \).

\[
V_A(x) = V_A(y^{-m}) \geq V_A(y) \Rightarrow V_A(x) \supseteq V_A(y).
\]

The following example shows that the converse of lemma 3.15 is not true.

Example: Let \(I \) be the unit interval \([0, 1]\) of real numbers. Let \(a + b = \min \{1, a + b\} \). With the usual ordering \((I, \oplus, \leq, -)\) is an involutory DRL-semigroup. Let \(G = \{ e, a, b, c \} \).

Define the I-vague set \(A \) of \(G \) by

\[
V_A(x) = \left\{ \begin{array}{ll}
\left[\frac{1}{2}, 1 \right] & \text{if } x \in A > \\
\{0, \frac{3}{4}\} & \text{otherwise.}
\end{array} \right.
\]

Then \(V_A(c) = [0, \frac{3}{4}] \) but \(< a > \) is not a subset of \(< c > \).

Definition 3.16: Let \(A \) be an I-vague group of a group \(G \). Image of \(A \) is defined as \(ImA = \{ V_A(x) : x \in G \} \).

Since \(V_A(x) \supseteq V_A(x) \) for all \(x \in G \), \(V_A(e) \) is the greatest element of \(ImA \).

Theorem 3.17: Let \(A \) be an I-vague group of a group \(G \).

(i) If \(G \) is cyclic then \(ImA \) has a least element.

(ii) If \(V_A(x) \leq V_A(y) \) then \(x \supseteq y \) and \(ImA \) has a least element then \(G \) is cyclic.

Proof: Let \(A \) be an I-vague group of \(G \).

(i) Suppose that \(G \) is cyclic. Then \(V_A(x) \) for some \(x \in G \). We prove that \(V_A(x) \) is the least element of \(ImA \).

Let \(y \in G \). Then \(y = x^m \) for some \(m \in Z \).

\[
V_A(y) = V_A(x^m) \supseteq V_A(x).
\]

We have \(V_A(x) \leq V_A(y) \) for every \(y \in G \).

Thus \(V_A(x) \) is the least element of \(ImA \) of \(A \).

(ii) Suppose that \(ImA \) has a least element say \(V_A(x) \) for some \(x \in G \). Let \(y \in G \). Then \(V_A(y) \geq V_A(x) \) for all \(y \in G \).

By our condition we have \(< y > \subseteq < x > \).

Since \(y \in < y > \), \(y \in < x > \). Hence \(G < x < y > \).

Consequently, we have \(G = < x > \).

Therefore \(G \) is cyclic.

Lemma 3.18: Let \(A \) be an I-vague group of \(G \). Let \(x, y \in G \).

The two conditions

(i) \(V_A(x) = V_A(y) \Rightarrow < x > = < y > \)

(ii) \(V_A(x) > V_A(y) \Rightarrow < x > < y > < x > \) are equivalent to the condition \(V_A(x) \geq V_A(y) \Rightarrow < x > < y > \).

Proof: Assume that the two conditions are given.

We prove that \(V_A(x) \geq V_A(y) \Rightarrow < x > < y > \).

If \(V_A(x) > V_A(y) \), then \(< x > < y > < x > \).

If \(V_A(x) = V_A(y) \), then \(< x > < x > < y > < x > \).

We have \(< x > < x > \).

Conversely, assume that \(V_A(x) \geq V_A(y) \Rightarrow < x > < y > \).

(i) Suppose that \(V_A(x) = V_A(y) \).

\[
V_A(x) = V_A(y) \Rightarrow V_A(x) \geq V_A(y) \text{ and } V_A(x) \geq V_A(y).
\]

(ii) \(V_A(x) > V_A(y) \Rightarrow V_A(x) \geq V_A(y) \Rightarrow < x > < y > < x > \).

Thus \(V_A(x) < V_A(y) \Rightarrow < x > < y > \).

Therefore

(i) and (ii) are equivalent to \(V_A(x) \geq V_A(y) \iff < x > < y > \).
Moreover, since G is a cyclic group of prime power order, $O = a_i$ satisfies $V_a(y) \Rightarrow x \Rightarrow y >$. Then $V_a(x) < V_a(y) \Rightarrow x > y >$. Let A be a cyclic group of prime power order.

Proof: Let A be an I-vague group of a group G such that the image set of A is given by $\text{Im}A = \{I_0 > I_1 > \ldots > I_n\}$ and such that

(i) $V_a(x) = V_a(y) \Rightarrow x \Rightarrow y >$;
(ii) $V_a(x) < V_a(y) \Rightarrow x > y >$.

By the definition of A we have a_i satisfies $V_a(y) \Rightarrow x \Rightarrow y >$. Thus $V_a(x) < V_a(y) \Rightarrow x > y >$.

Since G is a cyclic group of prime power order, $O = a_i$ satisfies $V_a(y) \Rightarrow x \Rightarrow y >$. Hence $V_a(x) < V_a(y) \Rightarrow x > y >$.

Step(2) We show that A is an I-vague group of G.

By the definition of A we have $O(x) = O(y)$ implies $x \Rightarrow y >$. Hence $V_a(x) < V_a(y) \Rightarrow x > y >$.

Moreover, since G is a cyclic group of prime power order, $< x > \wedge < y >$ or $< y > \wedge < x >$.

If $x < y$ then $x, y \in < y >$. Hence $< x > \wedge < y >$.

If $y \leq x$ then $x, y \in < x >$. Hence $< x > \wedge < y >$.

Theorem 3.19: Let A be an I-vague group of a group G such that the image set of A is given by $\text{Im}A = \{I_0 > I_1 > \ldots > I_n\}$ and such that

(i) $V_a(x) = V_a(y) \Rightarrow x \Rightarrow y >$;
(ii) $V_a(x) < V_a(y) \Rightarrow x > y >$.

Then A is a cyclic group of prime power order.

Suppose that $G = \mathbb{Z}/p\mathbb{Z}$, where p is not a prime power. Then there exist prime numbers p and q such that $p \neq q$ which are factors of m.

Consider $V_a(p)$ and $V_a(q)$.

Since $\text{Im}A = \{I_0 > I_1 > \ldots > I_n\}$, either $V_a(p) \geq V_a(q)$ or $V_a(p) < V_a(q)$. It follows that $< p > \leq q >$ or $< q > \leq p >$, a contradiction.

Hence G is not isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

Thus $G \cong \mathbb{Z}/p\mathbb{Z}$ for some $m \in N$.

Since G is not a prime power, then there exist prime numbers p and q such that $p \neq q$ which are factors of m.

Consider $V_a(p)$ and $V_a(q)$.

Suppose that G is a cyclic group of order p^m where p is prime and $m \in N \cup \{0\}$. We find an I and an I-vague group A of G satisfying (i) and (ii).

Step(3) We show that A satisfies the conditions (i) and (ii) of the theorem.

(a) Suppose that $V_a(x) = V_a(y)$ for $x, y \in G$.

Since G is a cyclic group of prime power order, $O(x) = O(y)$ implies $x \Rightarrow y >$. Hence $V_a(x) = V_a(y) \Rightarrow x > y >$.

(b) Suppose that $V_a(x) = V_a(y)$ for $x, y \in G$. Then $I_j \geq I_k$.

It follows that $< j > \leq < k >$.

Since G is a cyclic group of order p^m and $O(x) \leq O(y)$, $< x > \leq < y >$. Hence $V_a(x) = V_a(y) \Rightarrow x \leq y$.

Therefore A satisfies (i) and (ii).

Hence the theorem follows.

Acknowledgment

The author would like to thank Prof. K. L. N. Swamy and Prof. P. Ranga Rao for their valuable suggestions and discussions on this work.

References

