Limit Analysis of FGM Circular Plates Subjected to Arbitrary Rotational Symmetric Loads
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Limit Analysis of FGM Circular Plates Subjected to Arbitrary Rotational Symmetric Loads

Authors: Kargarnovin M.H., Faghidian S. A, Arghavani J.

Abstract:

The limit load carrying capacity of functionally graded materials (FGM) circular plates subjected to an arbitrary rotationally symmetric loading has been computed. It is provided that the plate material behaves rigid perfectly plastic and obeys either the Square or the Tresca yield criterion. To this end the upper and lower bound principles of limit analysis are employed to determine the exact value for the limiting load. The correctness of the result are verified and finally limiting loads for two examples namely; through radius and through thickness FGM circular plates with simply supported edges are calculated, respectively and moreover, the values of critical loading factor are determined.

Keywords: Circular plate, FGM circular plate, Limit analysis, Lower and Upper bound theorems.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332230

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599

References:


[1] W. Prager, "An introduction to plasticity" Reading, MA: Addison- Wesley; 1959.
[2] M. R. Horne, "Plastic theory of structures". Cambridge, MA: MIT; 1971.
[3] E. H. Mansfield, "Studies in collapse analysis of rigid-plastic plates with a square yield diagram", Proc. R. Soc. A; pp.241:311-38, 1958.
[4] P.G. Hodge, "Limit analysis of rotationally symmetric plates and shells", Englewood Cliffs, NJ: Prentice-Hall; 1963.
[5] M.A. Save, "Massonnet CE. Plastic analysis and design of plates, shells and disks. Amsterdam", North-Holland; 1972.
[6] Z. Sobotka, "Theory of plasticity and limit design of plates", Amsterdam: Elsevier; 1989.
[7] M. Ghorashi, "Limit analysis of circular plates subjected to arbitrary rotational symmetric loadings", Int. J. Mech. Sci.; vol. 36, no. 2, pp.87- 94,1994.
[8] M. Ghorashi, M. Daneshpazhooh, "Limit analysis of variable thickness circular plates", Comp. and Struct.; vol. 79, no 2, pp.461-468, 2001.
[9] M. Guowei, I. Shoji, M. Yutaka, D. Hideaki, "Plastic limit analysis of circular plates with respect to unified yield criterions", Int. J. Mech. Sci.; vol. 40, no. 10,pp. 963-976, 1998.
[10] T. Hirai, "Functionally gradient materials", In: Brook RJ, editor. Processing of ceramics, Part 2. Mat. Sci. and Tech., Weinheim, Germany: VCH Verlagsgesellschaft mbH;; vol.17B, pp. 292-34, 1996.
[11] S. Suresh, A. Mortensen "Functionally graded materials", London: The Institute of Materials, IOM Communications Ltd.; 1998.
[12] G.H. Paulino, Z.H. Jin, R.H. Jr. Dodds "Failure of functionally graded materials", In: B. Karihaloo, W.G. Knauss, editors. Comprehensive Struct. Integ., vol.2, Oxford: Elsevier Science Limited; 2002, ch. 13.
[13] S. Suresh, and A. Mortensen, "Fundamentals of Functionally Graded Materials", IOC Communications Ltd, London, 1998.
[14] R. L. Williamson, B. H. Rabin, and Drake, "Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces", I. Model description and geometrical effects, J. T. J. Appl. Phys., vol. 74, pp. 1310-1320, 1993
[15] A. Mortensen, and S. Suresh, "Functionally graded metals and metalceramic composites: Part 1", Processing, S. Int. Mater. Rev., vol. 40, pp. 239-265, 1995.
[16] S. Suresh, and A. Mortensen, "Functionally graded metals and metalceramic composites: Part 2", Thermomechanical Behaviour,A. Int. Mater. Rev., vol. 42, pp. 85-116, 1997.
[17] I. Tamura, Y. Tomota, H. Ozawa "Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength", In: Proc. of the Third Int. Conf. on Strength of Metals and Alloys, vol. 1. Cambridge: Institute of Metals; pp. 611-5, 1973.
[18] M. H. Kargarnovin and M. Ghorashi, "Limit analysis of a circular plate subjected to an arbitrary rotational symmetric loading", Proc. 3rd Int. Conf. on Computational Plasticity, Barcelona;:pp.2149-2159, 1992
[19] Z. H. Jin R.H. Doddas Jr, "Crack growth resistance behavior of a functionally graded material: computational studies", Engineering Fracture Mechanics; vol. 71, pp.1651-1672, 2004.