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Abstract—The real representation of the quaternionic matrix is
definited and studied. The relations between the positive (semi)define
quaternionic matrix and its real representation matrix are presented.
By means of the real representation, the relation between the positive
(semi)definite solutions of quaternionic matrix equations and those of
corresponding real matrix equations is established.
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I. INTRODUCTION

N the study of quaternionic quantum mechanics and some

other applications of quaternions [1], [2], [3], one often
encounters the problem of solutions of quaternionic linear
equations. Because of noncommutativity of quaternions, solv-
ing quaternionic linear equations is more difficult. In papers[4],
[5], [6], by means of a complex representation and a com-
panion vector, the authors have studied quatemionic linear
equations and presented a Cramer rule for quaternionic linear
equations and an algebraic algorithm for the least squares
problem, respectively, in quaternionic quantum theory. In the
paper[8], by means of a real representation of the quaternionic
matrix, we gave an iterative algorithms for the least squares
problem in quaternionic quantum theory.

How to find positive (semi)definite solution of quaternionic
matrix equations is also an important problem in quaternionic
quantum theory. However, to our best knowledge, the problem
has not been studied for its difficulty.

In this paper, we will pay attention to positive (semi)definite
solutions of quaternionic matrix equations by means of a real
representation of the quaternionic matrix and establish the
relation between this problem and the corresponding problem
in the real number field. Because the latter has been studied
wildly, we may apply the existing results to the former.

Let R denote the real number field, Q = RPRiGRjERE
the quaternion field, where i2 = j2 = k? = —1,ij = —ji =
k. For any quaternion a = aq+asi+asj+ask where a; € R,
the conjugate of a is a = a; — ast — agj — ask. For any
quaternion matrix A, AT A and A" denote the transpose,
conjugate and conjugate transpose of A over quaternion field,
respectively. F™*™ denotes the set of m x n matrices on a
field F. For A € Q™*", Ais unitary if AT A = AA” = I and
Hermitian if A¥ = A. For any Hermitian matrix A € Q"*",
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A is positive (semi)definite if 2f Az > 0(> 0) for any nonzero
vector z € Q".

II. REAL REPRESENTATION

In this section, we will give the definition of the real
representation and study the relation between the positive
(semi)define quaternionic matrix and its real representation
matrix.

Let A, € R™*"(l = 1,2,,3,4). The real representation
matrix is defined[7] in the form

A —Ay —As —A,
A A —A A
R _ 2 1 4 3 Admx4dn
e R K RNE)

Ay —As Ay Ay
The real matrix A" is uniquely determined by quaternion
matrix A = Ay + Asi + Azj + Agk € Q™*™, and it is said
to be a real representation matrix of quaternion matrix A.
Let I; be t x t identity matrix and define

L, 0 0 O

o - 0o o
P=119 o I, 0 ’ 2
0 0 0 -1
0 -I, 0 0
oo 0 0
Qt_ 0 0 0 It 9 (3)
0 0 —-IL 0
0 0 0 -1
o o 1 o
St_ 0 _It 0 0 ) (4)
I, 0 0 0
0 0 —-I 0
0 0 0 -—I
Ry = . Q)

I, 0 O 0
0 I O 0

Then it is easy verify the following properties.

Proposition 2.1. Let A, B € Q™*",C € Q"**,a € R. Then
(a). (A+ B)E = AR + BE (aA)f = a AR,
(AC)R = ARCR,
(b). Q= R3, = Siy = —Lam, Qp, = —Qm,
RL = -R,,,SL =-S5,
(c). RQO = Sma QmSm = Rm7 SmRm = Qm7
(e). Q%ARQN = QmARQZ = AR7
RLARR, = R, ARRL = AR
ST ARS, = 8, ARST = AR

m
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(AR (AT)E # (AR)T, (AD)E = (AR)T,
A M\" AR MR
(8) (N D =L { yr pr
where 11y and 11y are permutation matrices.
(h). 27Qnr =2" Rz =275,z =0
for any vector x € R*"

). (A")F =
> I,

Theorem 2.2. For any matrix Y € R4 Y is q real
representation matrix if and only if

QTYQ,=RLYR, =STYS, =Y.

Proof. Necessity. It is obvious in terms of (e) in proposition
2.1.
Sufficiency. Let

V= +QLYQ, + RIYR, + SLYS,)/4.

Then Y = Y. Partition Y as Y = (Yij)axa, where Y;;s are
m X n matrices. By direct computation, we have

Vi Y, -Y; -V,
3 Yo i -Yi Vi
v=v=| 22 ) 3

Vv, Vi o Yi -V, |’

Vv, V3 Y» W
where

}A/l = (Y11 + Yoo + Y33 + Yi4) /4,
Yo = (Yo1 — Y12 + Yz — Ya4) /4,
ng = (Y24 + 5/31 - 3/13 - Y42)/47
Yy = (Yao + Yy — Yoz — Y14) /4.
Sp Y js the Areal rePresentation matrix of quaternionic matrix

Yl —+ YQZ —+ ng -+ Y4k‘
The following result may be verified directly.

Corollary 2.3. For any Y € RAm>4n,
Y +QLYQn+RLYR, +SLYS,
is a real representation matrix.
By direct verification, we easily obtain the following result.

Theorem 2.4. For any V € R¥m™*",

is a real representation matrix.
The following result follows from (a) and (f) in proposition
2.1.

Theorem 2.5. U € Q™*™ is an unitary matrix if and only if
its real representation matrix U is an orthogonal matrix.

Theorem 2.6. Let A € Q"*™ be a Hermitian matrix. Then
A(A) € R and
N'(A) = A(AT),

where \"(A) denotes the set of right eigenvalues of A.

Proof. First, \"(A) € R. Indeed, for Az = zA with the unit
vector z, we have A = 21 Az, A = (2 Ax)H = 2 Az = ),
and therefore A € R.

International Scholarly and Scientific Research & Innovation 4(1) 2010

Next, for any A € A\"(A), there exists a quaternionic vector
x such that Az = x\, and hence

AR = 2 Bdiag(A\, N, M\, N),

which implies A%2R(:,1) = AxF(;,1), ie., A € A\(AT).

For any \ € \(AT), there exists a real vector u such that
ARy = Au. Because of ARR,u = AR, u, ARQ,u = A\Q,u
and ARS, u = \S,,u, we have

AR(U7 Qnu7 Rnu’ Snu) = )\(u, Qnu7 Rn'uq Snu)
= (u, Qnu, Rpu, Spu)diag(A, A, A, A)

It follows from theorem 2.4 that (u, Qnu, Ryu, S,u) is the
real representation of some quaternionic vector. Denote this
quaternionic vector by w1, then we have ARult = uf'A%, and
Aup = u A ie, A € AT(A)

As we know, a Hermitian quaternionic matrix A is positive
(semi)definite if and only if \"(A4) > 0(> 0). Therefore, we
can easily obtain the following results.

Corollary 2.7. Let A € Q"*"™ be Hermitian. Then A is
positive (semi)definite if and only if AR is positive defi-
nite(semidefinite).

Corollary 2.8. Let A, B € Q™"*" be Hermitian. Then A — B
is positive (semi)definite if and only if A" — BT is positive
(semi)definite.

Theorem 2.9. Let A € R*™*4" be symmetric. Then A is
positive (semi)definite if and only if A+QLAQ, + ST AS,, +
RI AR, is positive (semi)definite.

Proof. The necessity is obvious. Next, we prove the suffi-
ciency. For any z € R*, (I,QI, R, ST is full column
rank, and therefore there exists y € R*" such that

I T
Qn | =
R, Y=1 z
S T
Due to (0 <)0 < yT(A+ QL AQ,, + SLAS, + RLAR,)y
A I
A Q
_ T T pT oT n
A S

= 42T Az, we have 27 Az > 0(> 0), i.e.,A > 0(> 0).

ITI. POSITIVE SEMIDEFINITE SOLUTIONS OF
QUATERNIONIC MATRIX EQUATION

In this section, we discuss the relation between the positive
(semi)definite solutions of quaternionic matrix equation

AXA® =B (6)
and those of real matrix equation
ARU(ART = BE, )

where A € Q™*", B ¢ HQ™ ™.
First, we give the relation between the general solutions of
quaternionic matrix equation

AXC=E ®)

117 1SN1:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:4, No:1, 2010 publications.waset.org/4376/pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:4, No:1, 2010

and those of real matrix equation
ARU(CctT = ER, )

where A € Q™ ", C € QP*1 F € Q™*1. The following
result is a special case of the corresponding result of [7].

Lemma 3.1.Quaternionic matrix equation (8) has a solution
X € Q"*P if and only if real matrix equation (9) has a
solution U € Q*™**P_in which case,

1
X = Je il jIn, kL) (U + QIUQ,

I
—il,
—il,
—kI,
is a quaternionic matrix solution of (8). Furthermore, if (9)
has an unique solution, then (8) has also an unique solution.

Theorem 3.2. Given A € Q™*", B € HQ™*™. Then
1. (6) has a positive (semi)definite solution if and only if
real matrix equation (7) has a positive (semi)definite solution.
2. When (6) has a positive (semi)definite solution, the
general expression of this solution is

1
X = E(Ina ZIna jIna kIn)(U + QZUQP

I
—il),
—jl,
—kI,
where U is a positive (semi)definite solution of (7). Fur-
thermore, if U is the maximal(minimal) solution of (7), then

the corresponding solution X is also the maximal(minimal)
solution of (6).

+RIUR, + SEQS,)

+RIUR, + SEQS,)

Proof. If (7) has a positive (semi)definite solution U, then
from Theorem 2.9 and Theorem 3.1, we know that

A 1
=0+ QTUQ +STUS + RTUR)

is also a positive (semi)definite solution of (7). Let U be the
real representation matrix of quaternionic matrix X. It follows
from Corollary 2.7 that X is a positive (semi)definite solution
of (6).

If U; and U, are positive (semi)definite solutions of (7)
satisfying Uy > Us, then

1
1O+ QTU,Q + STU,S + RTUR)

1
> Z(UQ + QTULQ + STU,S + RTULR),

and both are positive (semi)definite solutions of (7). Let them
be the real representation matrices of quaternionic matrces X
and Xo, respectively. Then from Corollary 2.8, we have X,
and X are positive (semi)definite solutions of (6) satisfying
X1 > Xs.

Theorem 3.2 establishs the relation between positive
(semi)definite solutions of quaternionic matrix equations (6)
and those of corresponding real matrix equations (7). For
the latter, there have been many good theoretical results and
numerical methods, which may be applied to the former.
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IV. CONCLUSION

In the paper, we only take a simple but common equation
(6) as an example. Our idea is applied to more complicated
linear quaternionic matrix equations.
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