Global Behavior in (Q-xy)2 Potential
Authors: K. Jaroensutasinee
Abstract:
The general global behavior of particle S a non-linear (Q - xy)2 potential cannot be revealed a Poincare surface of section method (PSS) because inost trajectories take practically infinitely long time to integrate numerically before they come back to the surface. In this study as an alternative to PSS, a multiple scale perturbation is applied to analyze global adiabatic, non-adiabatic and chaotic behavior of particles in this potential. It was found that the results can be summarized as a form of a Fermi-like map. Additionally, this method gives a variation of global stochasticity criteria with Q.
Keywords: Multiple Scak Perturbation The Poincare Surface or Section, Fermi Map
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1331553
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264References:
[1] Qollas, DJ Klein, and H. Schwebler, CHAOS, Vol. 8 (2), p. 262, 1998.
[2] P. Dahlqvist and G Russberg, Phys. Rev. Lett., vol. 65 (23) p. 2837, 1990.
[3]-, J. Phys., vol. A 24, p. 4763, 1991.
[4] K. Jaroensutasinee and G. Rowlands, J. Plasma Phys., Vol 63 (3), p. 255, 2000.
[5] M. G. Rusbridge, Plasma Phys., vol. 13, p. 977, 1971b.
[6] -, Plasma Phys., vol. 19 p. 1087T, 1977.
[7] J. Howard, Phys. Fluids, vol. 14, p. 2373, 1971.
[8] A. H. Nayfeh and D. T. Mook, "Nonlinear oscillations," John Wiley & Sons, 1979.
[9] B. V. Chirikov, Phys. Reports, Vol. 52, p. 265, 1979.
[10] V. D. II'in, S. N. Kuznetsov, and B. Y. Yushkov, JETP Lett., vol. 55 (11), p. 645, 1992.
[11] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Vol. Springer-Verlag, 1983
[12] S. G. Tagare, Phys. Rev. A, vol. 34, no. 2, pp. 1587-1590, Aug 1986.
[13] K. Jaroensutasinee and G. Rowlands, J. Phys., vol. A 27, p. 1163, 1994