**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30172

##### Numerical Simulation of Deoilin Hydrocyclones

**Authors:**
Reza Maddahian,
Bijan Farhanieh,
Simin Dokht Saemi

**Abstract:**

In this research the separation efficiency of deoiling hydrocyclone is evaluated using three-dimensional simulation of multiphase flow based on Eulerian-Eulerian finite volume method. The mixture approach of Reynolds Stress Model is also employed to capture the features of turbulent multiphase swirling flow. The obtained separation efficiency of Colman's design is compared with available experimental data and showed that the separation curve of deoiling hydrocyclones can be predicted using numerical simulation.

**Keywords:**
Deoiling hydrocyclone,
Eulerian-Eulerian Model,
Numerical simulation,
Separation efficiency,
Reynolds Stress Model

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1331235

**References:**

[1] W. M. G. T. Van den Broek, R. Plat, "Characteristics and Possibilities of Some Techniques for De-Oiling of Production Water", in Proc. 1st Int. Conf. on Health, Safety and Environmental, Netherlands, 1991, SPE 23315

[2] W. M. G. T. Van den Broek, R. Plat, M. J. Van der Zande, "Comparison of Plate Separator, Centrifuge and Hydrocyclone", Proc. SPE Int. Conf. and Exhibition, Beijing, China, SPE 48870, 1998

[3] D. J. Simkin, R. B. Olney, "Phase Separation and Mass Transfer in a Liquid-Liquid Cyclone", AIChE, Vol. 2, pp. 545-551, 1956

[4] Sheng H. P., Welker J. R., Sliepcevich C. M., "Liquid-Liquid Separation in a Conventional Hydrocyclone", The Canadian J. of Chem. Eng., Vol. 52, pp.487-491, 1974

[5] D. A. Colman, "The Hydrocyclone for Separating Light Dispersions", Ph.D. Thesis, Southampton University, UK, 1981

[6] D. Colman, M. Thew, D. Corney, "hydrocyclones for Oil/Water Separation". in Int. Conf. on Hydrocyclones, BHRA, Cambridge, United Kingdom, paper 11, pp. 143-165, 1980

[7] D. Colman, M. Thew, "Hydrocyclone to Give a Highly Concentrated Sample of a Lighter Dispersed Phase". In Int. Conf. on Hydrocyclones, BHRA, Cambridge, United Kingdom, paper 15, pp. 209-223, 1980

[8] D. Colman, M. Thew, "Correlation of Separation Results From Light Dispersion Hydrocyclones", Chem. Eng. Res. Des., Vol. 61, pp. 233-240, 1983

[9] D. Colman, M. Thew, "Cyclone Separator", U.S. Patent 4764287, 1988

[10] M. T. Thew, "Hydrocyclone Redesign for Liquid-Liquid Separation", The Chemical Engineer, pp. 17-23, 1986, July/August

[11] N. Meldrum, "Hyrocyclones: A Solution to Produced-Water Treatment", SPE Production Engineering, SPE 16642, 1988

[12] M. S. Choi, "Hydrocyclone Produced Water Treatment for Offshore Developments", Proc. 65th Annual Technical Conf. and Exhibition of the Society of Petroleum Engineers, New Orleans, Los Angeles, SPE 20662, 1990

[13] F. J. Noort, J. P. Etten, R. S. Donders, "Reduction of Residual Oil Content in Produced Water at Offshore Gas Production Platform P/6A", Proc. Europe's 90 Conf., The Hague, Netherlands, SPE 20882, 1990

[14] D. A. Falnigan, J. E. Stolhand, E. Shimoda, F. Skllbeck, "Use of Low-Shear Pumps and Hydrocyclones for Improved Performance in the Cleanup of Low-Pressure Water", SPE Production Engineering, SPE 19743, 1992

[15] P. S. Jones, "A Field Comparison of Static and Dynamic Hydrocyclones", SPE Production and Facilities, SPE 20701, 1993

[16] J. C. Ditria, M. E. Hoyack, "The Separation of Solids and Liquids with Hydrocyclone Based Technology for Water and Crude Processing", Proc. of SPE Asia and Pacific Oil & Gas Con!, SPE 28815, 1994

[17] G. A. B. Young, W. D. Wakley, D. L. Taggart, S. L. Andrews, J. R. Worrell, "Oil-Water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions", J. of Petroleum Sci. and Eng., Vol. 11, pp. 37-50, 1994

[18] A. Belaidi, M. T. Thew, "The Effect of Oil and Gas Content on the Controllability and Separation in a De-Oiling Hydrocyclone", Trans. IChemE, Part A, Vol. 81, pp. 305-314, 2003

[19] T. Husveg, 0. Rambeau, T. Drengstig, T. Bilstad, "Performance of a Deoiling Hydrocyclone during Variable Flow Rates", Minerals Eng., 20, pp. 368-379, 2007

[20] Z. Bai, H. Wang, S. Tu, "Experimental study of flow patterns in deoiling hydrocyclone", Minerals Eng., Vol. 22, Issue 4, March, pp. 319-323, 2009

[21] N. Zhou, Y. Gao, W. An, M. Yang, "Investigation of velocity field and oil distribution in an oil-water hydrocyclone using a particle dynamics analyzer", Chem. Eng. J., Vol. 157, Issue 1, pp. 73-79, 2010

[22] H. J. Hargreaves, R. S. Silvester, "Computational fluid dynamics applied to the analysis of deoiling hydrocyclone performance", Chem. Eng. Res. and Des., Vol. 68, pp. 365-83. July 1990

[23] S. A. Grady, G. D. Wesson, M. Abdullah, E. E. Kalu, "Prediction of 10-mm Hydrocyclone Separation Efficiency Using Computational Fluid Dynamics", Filtration & Separation, Vol. 40, Issue 9, November, pp. 41-46, 2003

[24] C. A. Petty, S. M. Parks, "Flow Structures within Miniature Hydrocyclones", Mineral Eng., Vol. 17, pp. 615-624, 2004

[25] S. Huang, "Numerical Simulation of Oil-water Numerical Simulation of Oil-water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows", The Canadian J. of Chem. Eng., Vol. 83, Issue 5, pp. 829-834, 2005

[26] S. Noroozi, S. H. Hashemabadi, "CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation Efficiency", Chem. Eng. Technol., 32, No. 12, 1885-1893, 2009

[27] S. Noroozi, S. H. Hashemabadi, "CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency, Chem. Eng. Res. Des., doi:10.1016/j.cherd.2010.11.017, 2011

[28] M. Ishii, Thermo-fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles, 1975

[29] D. A. Drew, Mathematical Modeling of Two-Phase Flow, Ann. Rev. Fluid Mech., Vol. 15, pp. 261-91, 1983

[30] H. Enwald, E. Peirano, A. E. Almstedt, "Eulerian two-phase flow theory applied to fluidization", Int. J. of Multiphase Flow, Vol. 22, pp. 21-66, 1996

[31] A. Saboni, S. Alexandrova, "Numerical study of the drag on a fluid sphere", AIChE J., Vol. 48, No. 12, DOI: 10.1002/aic.690481225, 2002

[32] N. Zuber, "on the dispersed two phase flow in the laminar regime", Chem. Eng. Sci., Vol. 19, pp. 897-917, 1964

[33] B. E. Launder, G. J. Reece, W. Rodi, "Progress in the development of a Reynolds-stress turbulence closure", J. of Fluid Mech., vol. 68, Apr. 15, pp. 537-566, 1975

[34] R. Maddahian, B. Farhanieh, M. Asadi, "Numerical Investigation of Velocity Field and Separation Efficiency of Deoiling Hydrocyclones", unpublished.

[35] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 1st ed., Taylor and Francis, Washington DC, 113-135, 1980

[36] B. Farhanieh, L. Davidson, Manual of CALC-BFC, Chalmers University of Technology, Gothenburg, Sweden, 1991

[37] F. Moukalled, M. Darwish, "Pressure-Based Algorithms for Multifluid Flow at All Speeds - Part I: Mass Conservation Formulation", Numer. Heat Transfer, Part B, Vol. 45, pp. 495-522, 2004

[38] C. M. Rhie, L. W. Chow, `Numerical study of the turbulent flow past an airfoil with trailing edge separation", AMA, Vol. 21, pp. 1527-1532, 1983

[39] M. Darwish, F. Moukalled, B. Sekar, "A Unified Formulation of The Segregated Class of Algorithms for Multifluid Flow at All Speeds", Numer. Heat Transfer, Part B, Vol. 40, pp. 99-137, 2001

[40] M. B. Carver, "A Method of Limiting Intermediate Values of Volume Fraction in Iterative Two-Fluid Computations", J. Mech. Eng. Sci., vol. 24, pp. 221-224, 1982

[41] M. S. Darwish and F. Moukalled, "Normalized Variable and Space Formulation Methodology for High-Resolution Schemes", Numer. Heat Transfer B, vol. 26, pp. 79-96, 1994.

[42] R. Maddahian, B. Farhanieh, B. Firoozabadi, "Turbulent flow in converging nozzles, part one: boundary layer solution", Appl. Math. Mech. -Engl. Ed., vol. 32, No. 5, pp. 645-662, 2011

[43] D. Wolbert, B. F. Ma, Y. Aurelle, J. Seureau, "Efficiency Estimation of Liquid-Liquid Hydrocyclones Using Trajectory Analysis", AIChE Journal, Vol. 41, No. 6, pp. 1395-1402, 1995.