Statistical Description of Wave Interactions in 1D Defect Turbulence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Statistical Description of Wave Interactions in 1D Defect Turbulence

Authors: Yusuke Uchiyama, Hidetoshi Konno

Abstract:

We have investigated statistical properties of the defect turbulence in 1D CGLE wherein many body interaction is involved between local depressing wave (LDW) and local standing wave (LSW). It is shown that the counting number fluctuation of LDW is subject to the sub-Poisson statistics (SUBP). The physical origin of the SUBP can be ascribed to pair extinction of LDWs based on the master equation approach. It is also shown that the probability density function (pdf) of inter-LDW distance can be identified by the hyper gamma distribution. Assuming a superstatistics of the exponential distribution (Poisson configuration), a plausible explanation is given. It is shown further that the pdf of amplitude of LDW has a fattail. The underlying mechanism of its fluctuation is examined by introducing a generalized fractional Poisson configuration.

Keywords: sub-Poisson statistics, hyper gamma distribution, fractional Poisson configuration.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086599

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556

References:


[1] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[2] J. Lega, Physica D, 152-153, 269 (2001).
[3] H. W. M¨uller, M. Tveitereid and S. Trainoff, Phys. Rev. E 48, 263 (1993).
[4] M. van Hecke and W. van Saarloos, Phys. Rev. E 55, R1259 (1997).
[5] Y. Liu and R. E. Ecke, Phys. Rev. E 59, 4091 (1999).
[6] A. T. Winfree, Science 175, 634 (1972).
[7] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Verlag, 1984.
[8] A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 (2006).
[9] Y. Kodama and A. Hasegawa, Opt. Lett. 17, 31 (1992).
[10] L. F. Mollenauer, J. P. Gordon and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[11] C. Pat´e, L. Gagnon and P. A. B´elanger, Opt. Commun. 74, 228 (1989).
[12] J. D. Gibbon and M. J. Mcguiness, Proc. R. Soc. Lond. A, 377, 185 (1981).
[13] N. Nozaki and N. Bekki, J. Phys. Soc. Jpn. 53, 1581 (1984).
[14] H. Chat´e, Nonlinearity 7, 185 (1994).
[15] M. van Hecke and M. Howard, Phys. Rev. Lett. 86, 2018 (2001).
[16] M. Howard and M. van Hecke, Phys. Rev. E 68, 026213 (2003).
[17] J. Sherratt and M. J. Smith, Physica D 241, 1671 (2012).
[18] H. Sakaguchi, Phys. Rev. E 76, 017205 (2007).
[19] Y. Uchiyama and H. Konno, Proceedings of the 20th Australian Institute of Physics Congress, New South Wales, Australia, 9-13 December 2012.
[20] H. Haken, Light: Vol. 1: Waves, Photons, Atoms, North Holland, 1981.
[21] H. Konno and P. S. Lomdahl, J. Phys. Soc. Jpn. 69, 1629 (2000).
[22] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977), Y. Cao, D. T. Gillespie and L. R. Petzold, J. Phys. Chem. 122, 014116 (2005), D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
[23] C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Verlag, 2009.
[24] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, 1972.
[25] E. Suzuki, Met. and Geophys. 18, 103 (1967).
[26] C. Beck, Physica A 306, 189 (2002).
[27] E. Orsinger and F. Polito, Stat. and Prob. Lett. 82, 852 (2012).