Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30174
Some Constructions of Non-Commutative Latin Squares of Order n

Authors: H. V. Chen, A. Y. M. Chin, S. Sharmini

Abstract:

Let n be an integer. We show the existence of at least three non-isomorphic non-commutative Latin squares of order n which are embeddable in groups when n ≥ 5 is odd. By using a similar construction for the case when n ≥ 4 is even, we show that certain non-commutative Latin squares of order n are not embeddable in groups.

Keywords: group, Latin square, embedding.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335142

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435

References:


[1] H. V. Chen, A. Y. M. Chin, and S. Sharmini, Constructions of noncommutative generalized latin squares of order 5. Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010) (Kuala Lumpur, Malaysia), November 2010, pp. 120-130.
[2] H. V. Chen, A. Y. M. Chin, and S. Sharmini. On non-commuting subsets of certain types in groups. Research Report No. 6/2010, Institute of Mathematical Sciences, Faculty of Science, University of Malaya.
[3] G. A. Freiman. On two- and three-element subsets of groups. Aequationes Mathematicae, 22:140-152, 1981.
[4] G. A. Freiman. Foundations of a structural theory of set addition, Translation from Russian. Translations of Math, Monographs, Vol. 37, Providence, R.I.: Amer. Math. Soc. VII, 1973.
[5] J. J. H. Tan. Some properties of subsets of finite groups. MSc Thesis, Institute of Mathematical Sciences, University of Malaya, 2004.