Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30174
The Effect of Seed Inoculation (Pseudomonas putida+Bacillus lentus) and Different Levels of Fertilizers on Yield and Yield Components of Wheat (Triticum aestivum L.) Cultivars

Authors: Hamid Abbasdokht , Ahmad Gholami

Abstract:

In order to study of The Effect of seed inoculation with Pseudomonas putida+Bacillus lentus on yield and yield components of wheat (Triticum aestivum L.) cultivars, an experiment was carried out as factorial based on Randomized Complete Block Design (RCBD) in Agricultural Research Station of Shahrood University of Technology. Results showed that inoculation with Pseudomonas putida+Bacillus lentus promoted seed germination. Also, inoculation with Pseudomonas putida+Bacillus lentus significantly affected grain yield, Number of spikes per m2, Number of grain per spike and 1000-seed weight and There was not statistically significant difference between Chamran and Pishtaz cultivars . Finally, the dosages of chemical fertilizers currently applied in commercial wheat field in Iran (Shahrood region) could be reduced through proper combination of Pseudomonas putida+Bacillus lentus inoculation plus fertilization.

Keywords: Seed inoculation, wheat, yield, yield components

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082724

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809

References:


[1] Amer, G.A.; Utkheda, R.S.; 2000. Development of formulation of biologica agents for management of root rot of lettuce and cucumber. Can. J. Microbiol. 46:809-816.
[2] Baldani, V.L.D.; Baldani, J.I.; Dobereiner, J.; 1987. Inoculation of fieldgrown wheat (Triticum astivum) with Azospirillum spp. In Brazil. Biol. Fertil. Soils 4: 37-40.
[3] Bashan, Y.; Levanony, H.; 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591-599.
[4] Belimov, A.A.; Kojemiakov, P.A.; Chuvarliyeve, C.V.; 1995. Interation between barley and mixed cultures of nitrogen fixing and phosphatesolubilizing bacteria. Plant Soil. 17:29-37.
[5] Bethlenfalvay, G.J.; Andrade, G.; Azcon-Aguilar, C.; 1997. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilize peas. Biol. Fertil.Soil. 24: 164-168.
[6] Bhattarai, T.; Hess, D.; 1993. Yield responses of Nepalese spring wheat (T. aestivum L.) cultivars to inoculation with Azospirillum spp. Of Nepalese origin. Plant Soil 151, 67-76.
[7] Biswas, J.C.; Ladha, J. K.; Dazzo, F. B.; 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc Am.J. 64:1644-1650.
[8] Bullied, W.J.; Buss, T.J.; Vessey, J.K. (2002). Bacillus cereus UW85 inoculation effects on growth, nodulation and N accumulation in grain legumes: Field studies. Can. J. Plant Sci., 82, 291-298.
[9] Caballero-Mellado, J.; Carcano-Montiel, M.G.; Mascarua-Esparza, M.A.; 1992. Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243-253.
[10] Cakmakci, R.; Kantar, F.; Sahin, F.; 2001. Effect of N-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 164:527-531.
[11] De Silva, A.; Patterson, K.; Rothrock, C.; Moore, J. (2000). Growth promotion of highbush blueberry by fungal and bacterial inoculants.Hort. Sci., 35, 1228-1230.
[12] De freitas, J.R,; 2000. Yield and N assimilation of winter wheat (T. aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia. 44: 97-104.
[13] Fukui, R.; Schroth, M.N.; Hendson, M.; Hancock, J.G.; Firestone, M.K.; 1994. Growth patterns and metabolic activity of Pseudomonas in sugar beet spermospheres: Relationship to pericarp colonization by Pythium ultimum. Phytopathol. 84:1331-1338.
[14] Gouzou, L.; Burtin, G.; Philippy, R.; Bartoli, F.; Heulin, T.; 1993. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56, 479-491.
[15] Glick, B.R.; Jacobson, C.B.; Schwarze, M.M.; Pasternak, J.J. (1994). 1- Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol., 40,911-915.
[16] Hoflich, G., Wiehe, W.; Hecht-Buchholz, C.H.; 1995. Rhizosphere colonization of different growth- promoting Pseudomonas and Rhizobium bacreria. Microbiol Res. 150:139-147.
[17] Joo, G.-J.; Kim, Y.-M.; Lee, I.-J.; Song, K.-S.; Rhee, I.-K. (2004).Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides, and Bacillus pumilus. Biotechnol. Lett., 26, 487-491.
[18] Kapulnik, Y.; Okon, Y.; Henis, Y.; 1987. Yield response of spring wheat cultivars (Triticum aestivum and T. durum) to inoculation with Azospirillum brasilense under field conditions. Biol. Fertil. Soil. 4: 27- 35.
[19] Kucey, R.M.N.; Janzen, H. H.; Legett, M.E.; 1989. Microbially mediated increases in plant available phosphorus. Adv. Agron. 42:199-228.
[20] Kumar, V.; Narula, N.; 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chrococcum. Biol. Fert. Soils. 28:301-305.
[21] Kim, D-S.; Cook, R.J.; Weller, D.M. (1997). Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathol., 87, 551-558.
[22] Kloepper, J.W.; Lifshitz, R.; Zablotowicz, R.M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol.,7, 39-44.
[23] Lifshitz, R.; Kloepper, J.W.; Kozlowsky, M.; Simonson, C.; Carlson, J.; Tipping, E.M. et al.; 1987. Growth promotion of canola (rapeseed) seedlings by strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33(5):390-395.
[24] Lugtenberg, B.J.; Chin-A-Woeng, T.F.; loemberg, G.V. (2002). Microbe-plant interactions: principles and mechanisms. Antonie van Leeuwenhoek, 81, 373-383.
[25] Murty, M.G.; Ladha, J.K.; 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant and Soil. 108: 281-285.
[26] Nicholson, W.L. (2002). Roles of Bacillus endospores in the environment. CMLS, Cell. Mol. Life Sci., 59, 410-416.
[27] Ozturk, A.; Caglar, O.; Sahin, F.; 2003. Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci. 166: 262-266.
[28] Pal, S.S.; 1999. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil. 213:221- 230.
[29] Quadt-Hallmann, A.; Hallmann, J.; Kloepper, J.W. (1997). Bacterial endophytes in cotton: location and interaction with other plantassociated bacteria. Can. J. Microbiol., 43, 254-259.
[30] Rai, S.N.; Gaur, A.C.; 1988. Characterization of Azotobacter spp. And effect of Azotobacter and Azospirillum as inoculant on the yield and Nuptak of wheat crop. Plant Soil. 109: 131-134.
[31] Rodriguez, C.E.A.; Gonzales, A.G.; Lopez, J.R.; Di Ciacco, C.A.; Pacheco, B.J.C.; Parada, J.L.; 1996. Response of fiel Grown wheat to inoculation with Azospirillum brasilense and Bacillus polymyxa in the semiarid region of Argentina. Soils Fertil. 59: 800.
[32] Ryder, M.H.; Nong, Y.Z.; Terrace, T.E.; Rovira, A.D.; Hua, T. W.; Correll, R.L.; 1999. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root ot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31,19-29.
[33] Ryu, C.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Wei, H.-X.; Pare, P.W.; Kloepper, J.W. (2003). Bacteria volatiles promote growth in Arabidopsis. Proc. Nat. Acad. Sci., (USA) 100, 4927-4932.
[34] Sahin, F.; Cakmakci, R.; Kantar, F.; 2004. Sugar beet and barley yields in relation to inoculation with N-fixing and phosphate solubilizing bacteria. Plant and Soil 265,123-129.
[35] Saubidet, M.I.; Fatta, N.; Barneix, A.J. (2002). The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant. Soil., 245, 215-222.
[36] Schilling, G.; Grnransee, A.; Deubel, A.; Lezovic, G.; Ruppel, S.; 1998. Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z. Pflanzenernahr. Bodenk. 161:465-478.
[37] Tiwari, V.N.; Lehri, L.K.; Pathak, A.N.; 1989 Effect of inoculating crop with phosphor-microbes. Exp. Agric. 25:47-50.
[38] Urquiaga, S.; Cruz, K.H.S.; Boddey, R.M.; 1992. Contribution of nitrogen fixation to suger cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci. Soc. Amer. Proc. 56:105-114.
[39] Whitelaw, M.A.; 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69:99-151.
[40] Whitelaw, M.A.; Hardenand, T.A.; Bender, G.L.; 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. Nov. Australian J. Soil Res. 35:291-300.
[41] Yoneyama, T.; Muraoka, T.; Kim, T.H.; Dacanay, E.V.; Nakanishi, Y.; 1997. The natural N abundance of sugarcane and neighboring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil. 189:239-244.
[42] Young, C.S.; Lethbridge, G.; Shaw, L.J.; Burns, R.G. (1995). Survival of inoculated Bacillus cereus spores and vegetative cells in nonplanted and rhizosphere soil. Soil Biol. Biochem., 27, 1017-1026.