A New Class F2 (M, 0, N)L„ p)F of The Double Difference Sequences of Fuzzy Numbers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A New Class F2 (M, 0, N)L„ p)F of The Double Difference Sequences of Fuzzy Numbers

Authors: N. Subramanian, C. Murugesan

Abstract:

The double difference sequence space I2 (M, of fuzzy numbers for both 1 < p < oo and 0 < p < 1, is introduced. Some general properties of this sequence space are studied. Some inclusion relations involving this sequence space are obtained.

Keywords: Orlicz function, solid space, metric space, completeness

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079442

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020

References:


[1] T.Apostol, Mathematical Analysis, Addison-wesley , London, 1978.
[2] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
[3] T.J.I'A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. ,New York, (1965).
[4] R.Colak and A.Turkmenoglu, The double sequence spaces go(p), co (p) and c2(p), (to appear).
[5] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
[6] H.Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2) (1981), 169-176.
[7] F.Moricz, Extentions of the spaces c and co from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
[8] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
[9] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
[10] A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri. ), 12(1), (1999), 23-31.
[11] L. A. Zadeh, Fuzzy sets, Inform control, 8(1965).
[12] J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
[13] M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
[14] P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.
[15] I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cam-bridge Philos. Soc, 100(1) (1986), 161-166.
[16] M.Mursaleen,M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math. , Vol. XXXII (1999), 145-150.
[17] H.Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[18] W.Orlicz, Uber Raume (LM) Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
[19] S.D.Parashar and B.Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. , 25(4)(1994), 419-428.
[20] W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[21] B.C.Tripathy,M.Et and Y.Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.
[22] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).