Towards an Extended SQLf: Bipolar Query Language with Preferences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Towards an Extended SQLf: Bipolar Query Language with Preferences

Authors: L. Ludovic, R. Daniel, S-E Tbahriti

Abstract:

Database management systems that integrate user preferences promise better solution for personalization, greater flexibility and higher quality of query responses. This paper presents a tentative work that studies and investigates approaches to express user preferences in queries. We sketch an extend capabilities of SQLf language that uses the fuzzy set theory in order to define the user preferences. For that, two essential points are considered: the first concerns the expression of user preferences in SQLf by so-called fuzzy commensurable predicates set. The second concerns the bipolar way in which these user preferences are expressed on mandatory and/or optional preferences.

Keywords: Flexible query language, relational database, userpreference.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1077593

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017

References:


[1] A. Agrawal and E.L. Wimmers, “A Framework for Expressing and Combining Preferences". In Proc. of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, USA, pp. 297-306, 2000.
[2] H. Andreka, M. Ryan, and P-Y. Schobbens, “Operators for Combining Preference Relations". In Jour. of Logic and Computation, 12(1):13- 53., 2002.
[3] S. Börzsnyi, D. Kossmann and K. Stoker, “The Skyline Operator". In Proc. of the 17th International Conference on Data Engineering, (ICDE01), Heidelberg, Germany, pp. 421-430, 2001.
[4] G. Bordogna, G. Pasi, “Linguistic aggregation operators of selection criteria in fuzzy information retrieval" In Int. Jour. of Intelligent Systems, vol. 10(2), pp.233-248, 1995.
[5] P. Bosc, O. Pivert, “Some approaches for relational databases flexible querying". In Jour. of Intelligent Information Systems, 1, pp. 323-354.
[6] P. Bosc, O. Pivert, “SQLf query functionality on top of a regular relational DBMS". In Knowledge Management in Fuzzy Databases, O.Pons, M.A. Vila, and J. Kacprzyk (Eds.) Heidelberg: Physica-Verlag, 2000.
[7] P. Bosc, O. Pivert, “SQLf: a relational database language for fuzzy querying". In IEEE Transactions on Fuzzy Systems, vol. (3) pp.1-17, 1995.
[8] N. Bruno, L. Gravano and A. Marian, “Evaluating Top-k Queries over Web-Accessible Databases". In Proc. of the 18th International Conference on Data Engineering (ICDE02), San Jose, California, USA, pp. 369-382, 2002.
[9] S. Chaudhuri, L. Gravano, “Evaluating top-k selection queries". In Proc. of the 25th International Conference on Very Large Databases, (VLDB), Edinburgh, Scotland, pp. 397-410, 1999.
[10] J. Chomicki, “Querying with Intrinsic Preferences". In Proc. of the 8th International Conference on Extending Database Technology, (EDBT02), Prague, Czech Republic, pp. 34-51, 2002.
[11] J. Chomicki, “Preference Formulas in Relational Queries". In ACM Transactions on Database Systems, (TODS-03), 28(4):1-39, 2003.
[12] P. Ciaccia and R. Torlone, “Finding the Best when it-s a Matter of Preference". Technical report available at: http://www/dia.uniroma3.it/ torlone/pubs/pub.htm, 2002.
[13] D. Dubois and H. Prade, “Using fuzzy sets in database systems: Why and how?". In Proc. of the 1996 Workshop on Flexible Query- Answering Systems, (FQAS-96), Roskilde, Denmark, pp. 89-103, 1996.
[14] D. Dubois, H. Fargier and H. Prade, “Beyond min aggregation in multicriteria decision: (ordered) weighted Min, Discrimin, Leximin". In The Ordered Weighted Averaging Operators - Theory and Applications. R.R. Yager, J. Kacprzyk (Eds.), Kluwer Academic Publ., Boston, pp. 181- 192, 1997.
[15] D. Dubois, “Pareto-Optimality and Qualitative Aggregation Structures" 22nd LINZ Seminar on Fuzzy Set Theory, Austria, pages 53-56, 2001.
[16] D. Dubois and H. Prade, “Bipolarity in flexible querying". In Proc. of the 5th International Conference on Flexible Query Answering Systems, (FQAS-02), Copenhagen, Denmark, 2002.
[17] P.C. Fishburn, “Preference Structures and Their Numerical representations". Theoretical Computer Science, 217(2): pp 359-383, 1999.
[18] J. Fodor, M. Roubens, “Fuzzy Preference Modelling and Multi-criteria Decision suppot". Kluwer Academic Publisher, 1994.
[19] W. Kießling, “Foundations of Preferences in Database Systems". In Proc. of the 28th International Conference on Very Large Data bases, (VLDB), Hong Kong, China, pp. 331-322, 2002.
[20] W. Kießling and G. Köstler, “Preference SQL - Design, Implementation, Experiences". In Proc. of the 28th International Conference on Very Large Data bases, (VLDB), Hong Kong, China, pp. 990-1001, 2002.
[21] M. Lacroix, P. Lavency, “Preferences: Putting More Knowledge into Queries". In Proc. of 13 th International Conference on Very Large Data Bases, (VLDB), Brighton, England, pp. 217-225, 1987.
[22] C. Li1, M.S. Soliman, C.K. Chang, I.F. Ilyas, “RankSQL: Supporting Ranking Queries in Relational Database Management Systems". In Proc. of the 31th International Conference on Very Large Databases, (VLDB), Trondheim, Norway, pp. 1342-1345, 2005.
[23] M. ├ûztrk, A. Tsoukia`s, P. Vincke, “Preference Modelling". In M. Ehrgott, S. Greco, J. Figueira (eds.), State of the Art in Multiple Criteria Decision Analysis, Springer-Verlag, Berlin, 27-72, 2005.
[24] L. A. Zadeh, “Fuzzy sets". In Jour. of Information and Control, vol.8, pp. 338-353, 1965.
[25] S. Zadrozny, J. Kacprzyk, “Bipolar Queries and Queries with Preferences". (Invited Paper). In Proc. of the 17th International Conference on Database and Expert Systems Applications, (DEXA-06), Krakow, Poland, pp. 415-419, 2006.