Density Functional Calculations of 27Al, 11B,and 14N and NQR Parameters in the (6, 0) BN_AlN Nanotube Junction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Density Functional Calculations of 27Al, 11B,and 14N and NQR Parameters in the (6, 0) BN_AlN Nanotube Junction

Authors: Morteza Farahani, Ahmad Seif, Asadallah Boshra, Hossein Aghaie

Abstract:

Density functional theory (DFT) calculations were performed to calculate aluminum-27, boron-11, and nitrogen-14 quadrupole coupling constant (CQ) in the representative considered model of (6, 0) boron nitride-aluminum nitride nanotube junction (BN-AlNNT) for the first time. To this aim, 1.3 nm length of BNAlN consisting of 18 Al, 18 B, and 36 N atoms was selected where the end atoms capped by hydrogen atoms. The calculated CQ values for optimized BN-AlNNT system reveal different electrostatic environment in the mentioned system. The calculations were performed using the Gaussian 98 package of program.

Keywords: Nanotube Junction, Density functional, Nuclear Quadrupole Resonance.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076178

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723

References:


[1] S. Iijima. Nature. 354 (1991) 56.
[2] N.G.Chopra, R.J.Luyken, K.Cherrey, V.H. Crespi, M.L.Cohen, S.G.Louie and A. Zetel. Science. 296 (1995) 966.
[3] H.Nakamura and Y.Matsui. J.Am.Chem.Soc. 117 (1995) 2651.
[4] L .Pu, X.Bao, J.Zou, and D.Feng. Angew.Chem. Int.Ed, 40 (2001)1490.
[5] P.J.F. Harris. Carbon Nanotubes and Related Structure, Cambridg University Press, Cambridge. 1999.
[6] L.W.Yin, Y.Bando, Y.C .Zhu, D.Golberg, and M.S .Li. Adv.Mater. 16 (2004) 929.
[7] Q .Wu, Z .Hu, X .Chen, H .Xu, and Y .Chen. J.Am.Chem.Soc. 125 (2003) 10176.
[8] X. Chen, J. Ma, Z. Hu, Q. Wu and Y. Chen. J. Am. Chem. Soc. 127 (2005)17144.
[9] Z .Zhou, J.J Zhao, Y.S .Chen, Pv. R.Schleyer, and Z.F .Chen. Nanotechnology. 18 (2007) 424023.
[10] M.W.Zhao, Y.Y. Xia, X.D. Liu, Z.Y. Tan, B.D. Huang, , C .Song, and L.M. Mei. J. Phys Chem. B. 110 (2006) 8764.
[11] D .Zhang, and R.Q .Zhang.Chem.Phys.Letter. 371 (2003) 426.
[12] M .Zhao, Y .Xia, D .Zhang, and L .Mei.Phys.Rev.B. 68 (2003) 235415.
[13] R.R .Zope and B.I .Dunlap. Phys.Rev.B. 72 (2005) 045439.
[14] S. Hou, J .Zhang, Z .Shen, X. Zhao, and Z .Xue.Physica E. 27 (2005) 45.
[15] P.S.Adrian, Electronic Structure of Materials. Oxford University press, New York.1996.
[16] I .Vurgaftman, and J.R .Meyer. Appl .J, 94 (2003) 3575.
[17] T.P. Das and E.L. Han. Nuclear quadrupole resonance spectroscopy, Academic Press, New York.1958.
[18] W.C .Bailey.Chem .Phys. 252 (2000) 57.
[19] R.K. Harris. Pure and Applied Science Chemistry P 1800.2001.
[20] A. Seif, M. Mirzaei, M. Aghaie and A. Boshra. Z Naturforsch. 62a (2007) 711.
[21] M. Mirzaei, N.L. Hadipour, J. Phys. Chem., A. 110 (2006) 4833.
[22] M. Mirzaei, N.L. Hadipour, Chem. Phys. Lett. 438 (2007) 304.
[23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. MillamA. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. TomasiV. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. CuiK. Morokuma, D. K. Malick, A. D. Rabuck, K. RaghavachariJ. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. LiuA. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. MartinD. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.Gonzalez,M. Challacombe, P. M. W. Gill, B. Jhnson, W. ChenM. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople , Gaussian, Inc., Pittsburgh PA, 1998.
[24] A.D. Becke. J. Chem. Phys. 98 (1993) 5648.
[25] P. Pyykkö, Mol. Phys. 99 (2001) 1617.