Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On 6-Figures in Finite Klingenberg Planes of Parameters (p2k-1, p)
Authors: Atilla Akpinar, Basri Celik, Suleyman Ciftci
Abstract:
In this paper, we deal with finite projective Klingenberg plane M (A) coordinatized by local ring A := Zq+Zq E (where prime power q = p', e0 Z q and 62 = 0). So, we get some combinatorical results on 6-figures. For example, we show that there exist p — 1 6-figure classes in M(A).
Keywords: finite Klingenberg plane, 6-figure, ratio of 6-figure, cross-ratio.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076042
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290References:
[1] A.Akpinar, B.Celik and S.Ciftci. Cross—ratios and 6-figures in some Moufang-Klingenberg planes. Bulletin of the Belgian Math. Soc.-Simon Stevin 15(2008), 49-64.
[2] A.Akpinar, B.Celik and S.Ciftci. 4-Transitivity and 6-Figures in Finite Klingenberg Planes of parameters (p2k -1 , p). International Journal of Comp. and Math. Sci. 4(1)(2010), 48-51.
[3] CA.Baker, ND.Lane and JW.Lorimer. A coordinatization for Moufang-Klingenberg Planes. Simon Stevin 65(1991), 3-22.
[4] PY.Bacon. An Introduction to Klingenberg planes. Vol. I (1976), Vol. II and III (1979), Florida.
[5] A.Blunck. Projectivities in Moufang-Klingenberg planes. Geom. Dedi¬cata 40(1991), 341-359.
[6] A.Blunck. Cross-ratios Over Local Alternative Rings. Res Math 19(1991), 246-256.
[7] A.Blunck. Cross-ratios in Moufang-Klingenberg Planes. Geom Dedicata 43(1992), 93-107.
[8] FS.Cater. On Desarguesian Projective Planes. Geom Dedicata 7(1978), 433-441.
[9] B.Celik, A.Akpinar and S.Ciftci. 4-Transitivity and 6-figures in some Moufang-Klingenberg planes. Monatshefte fur Mathematik 152(2007), 283-294.
[10] N.Celik, S.Ciftci and A.Akpinar. Some Properties of 6-Figures and Cross-Ratios in some Moufang-Klingenberg Planes. Journal of Algebra and Its Applications, accepted paper
[11] S.Ciftci. On 6-figures in Moufang Projective Planes. Commun. Foe Sci Univ Ank Series Ai 38(1989), 21-28.
[12] DA.Drake and H.Lenz. Finite Klingenberg Planes. Abh. Math. Sem. Univ. Hamburg 44(1975), 70-83.
[13] DA.Drake and H.Lenz. Finite Hjelmslev planes and Klingenberg epi-morphisms. Rings and geometry (Istanbul, 1984), 153-231 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 160(1985), Reidel, Dordrecht
[14] E.Kleinfeld. Finite Hjelmslev Planes. Illiois J. Math. 3(1959), 403-407.
[15] W.IClingenberg. Projektive and affine Ebenen mit Nachbarelementen. Math. Z. 60(1954), 384-406.
[16] W.IClingenberg. Projektive Geometrien mit Homomorphismus. Math. Ann. 132(1956), 180-200.
[17] H.LUneburg. Affine Hjelmslev-Ebenen mit transitiver Translations¬gruppe. Math. Z. 79(1962), 60-288.