Antibacterial Effect of Silver Nanoparticles on Multi Drug Resistant Pseudomonas Aeruginosa

Athirah Nur Amirulhusni, Navindra Kumari Palanisamy, Zaini Mohd-Zaie, Liew Jian Ping, R.Duraiaraj

Abstract—Multidrug resistant organisms have been taunting the medical world for the last few decades. Even with new antibiotics developed, resistant strains have emerged soon after. With the advancement of nanotechnology, we investigated colloidal silver nanoparticles for its antimicrobial activity against Pseudomonas aeruginosa. This organism is a multidrug resistant which contributes to the high morbidity and mortality in immunocompromised patients. Five multidrug resistant strains were used in this study. The antimicrobial effect was studied using the disc diffusion and broth dilution techniques. An inhibition zone of 11 mm was observed with 10 µg dose of the nanoparticles. The nanoparticles exhibited MIC of 50 µg/ml when added at the lag phase and the subinhibitory concentration was measured as 100 µg/ml. The MIC50 value showed to be 15 µg/ml. This study suggests that silver nanoparticles can be further developed as an antimicrobial agent, hence decreasing the burden of the multidrug resistance phenomena.

Keywords—Antimicrobial activity, Multidrug resistance, Pseudomonas aeruginosa, Silver nanoparticles

I. INTRODUCTION

PSEUDOMONAS AERUGINOSA, A gram negative bacterium, is one of the bacteria found to be resistant to multiple antibiotics. It rarely causes problems to healthy individuals. However, in immunocompromised patients, it is one of the most important opportunistic pathogen that contributes to the high rate of morbidity and mortality [1]. The spectrum of diseases caused by this bacterium continues to expand from urinary tract infection to septicaemia, osteomyelitis and endocarditis, posing new challenges as resistance to current empirical therapy limits the available treatment options [2].

Silver is currently regaining interest for its renowned antibacterial properties. It has been used since ancient times for treating a wide range of illnesses from burn wounds, typhoid, anthrax to bacterial conjunctivitis in newborns [3]. Numerous studies have been conducted to uncover the antimicrobial properties of silver in its various forms. Currently, nanotechnology is gaining interest for its potential application in many fields including nanoantibiotics [4].

This technology as its name implies, mainly enhances the potential of the material by manipulating the size to be in nanoscale. The smaller the particle, the greater the surface area for better interaction and contact with target sample. Even though there have been numerous literatures reporting various studies evaluating the antimicrobial effect of silver, there has been minimal reports on its activity against the multidrug resistant Pseudomonas aeruginosa. Kim Kuk et al (2007) demonstrated antibacterial properties against yeast, Escherichia coli and Staphylococcus aureus [5]. Other studies have worked with Bacillus megaterium, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Shigella sonnei [6]-[7]. In this study, we evaluated the potential of silver nanoparticles as an antimicrobial agent against multidrug resistant P. aeruginosa.

II. MATERIALS AND METHODS

A. Characterisation of silver (Ag) nanoparticles

Silver (Ag) nanoparticles were purchased from Nano Silver Manufacturing Sdn Bnd, Malaysia. The nanoparticles used are of sizes that ranged from 20–30 nm. Briefly, colloidal silver were placed on copper grid and analysed by using Scanning electron Microscope (SEM).

B. Bacterial Strains and Culture Media

Ten clinical isolates of P. aeruginosa strains comprising of five multidrug resistant (MDR) strains were used in the study. Four strains that were susceptible to common empirical antibiotics (imipenem (IPM), cefazidime (CAZ), cefoperazone (CFP), gentamicin (GM) and ciprofloxacin (CIP)) were used for comparison. P. aeruginosa (ATCC 27853) as a control. Brain heart infusion (BHI) and Muller Hinton (MH) agar were used as culture media.

C. Antimicrobial susceptibility test

This method was a modification of the agar disk diffusion method as described in Clinical and Laboratory Institute [8]. Approximately 10⁵ CFU/ml of bacterial colonies were lawn onto MH agar plates. Sterile discs containing 10 µg Ag nanoparticles were placed onto the lawn agar plates. Disc containing 10 µg gentamicin and water was used as a positive and negative controls, respectively. The plates were incubated overnight (18-24 hr) at 37°C. The diameter of zone of inhibition around the disc was observed and recorded. Experiments were conducted in triplicates and average inhibitory zone diameter with its standard deviation was determined.

Athirah Nur Amirulhusni is with the Faculty of Medicine, UniversitiTeknologi MARA (UiTM), Shah Alam, Malaysia (e-mail: 1_yra9@yahoo.com).

Navindra Kumari Palanisamy is with Faculty of Medicine, UniversitiTeknologi MARA (UiTM), Shah Alam, Malaysia (e-mail: navindra87@yahoo.com).

Zaini Mohd-Zaie is Faculty of Medicine, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia (e-mail: zainimz@salam.uitm.edu.my).

Liew Jian Ping is with Faculty of Engineering and Science, UniversitiTunku Abdul Rahman, Malaysia (e-mail: asli_rainy@gmail.com).

R.Duraiaraj is with Faculty of Engineering and Science, Universiti TunkuAbdul Rahman, Malaysia (e-mail: rajkumar@utar.edu.my).
D. Bacterial growth curve and inhibition assay

Bacterial suspension equivalent to 0.5 McFarland’s Standard was pipetted into a 96 well-plate and kinetic optical density for 24 hours at 37°C was recorded using SpectraMax190 at wavelength 600 nm. A growth curve of the organism was plotted and the time taken for the bacteria to reach mid-log phase and the time taken to reach stationary phase was recorded.

The minimum inhibition concentration (MIC) of the Ag nanoparticles was determined by broth microdilution method. Bacterial suspension of 0.5 McFarland’s Standard was pipetted into a 96 well-plate. The strains were incubated for 24 hr at 37°C with a two-fold serial dilution of silver nanoparticles (Figure 1) added at 0 hr (beginning of lag phase) and after 4 hr (mid-log phase) of incubation. Following 24 hr incubation, the suspension was visualized for clarity.

E. Minimum bactericidal concentration (MBC)

Samples from wells used in broth microdilution assay that did not exhibit any visible growth after the 24 hr incubation was subcultured onto MH agar plates. The MBC was recorded as the lowest concentration of the Ag nanoparticles that did not allow a single colony to grow on the agar after further 24 hr incubation.

III. RESULTS AND DISCUSSION

Organisms that are resistant to three or more classes of antibiotics are considered as multidrug resistant (MDR). Table I shows strains 19, 26, 38, 43a and 47 are MDR strains as they exhibit resistance against carbapenem, cephalosporin, aminoglycosides and fluoroquinolone.

TABLE I

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>Strains</th>
<th>Carbenem</th>
<th>Cephalosporin</th>
<th>Aminoglycoside</th>
<th>Fluoroquinolone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 27853</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>22</td>
<td>28</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>25</td>
<td>28</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>28</td>
<td>33</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>28</td>
<td>30</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>43a</td>
<td>9</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>21</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

* Interpretation according to CLSI: R = resistant; I = intermediate; S = sensitive; IPM: R<14 mm, I<15 mm, S>16 mm; CFP: R<16, I=16-20, S>20; CAZ: R<15, I: 15-17, S>17; GM: R<13, I: 13-14, S>14; CIP: R<16, I: 16-20, S>20. Numerics in bold indicate resistant.

Using the broth microdilution method, the MIC value was 50 µg/ml when the Ag nanoparticles were introduced at 0 hr, and the MIC was 100 µg/ml it was introduced after 4 hr of incubation. Minimum bactericidal concentration for the samples treated with the Ag nanoparticles at 0 hr and 4 hr are 100 µg/ml and 200 µg/ml respectively. Fig 1(a) exhibit clarity at Ag nanoparticle concentration of 50 µg/ml while Fig 1(b) exhibit clarity at Ag NP concentration of 100 µg/ml. Experiments for all 10 samples were carried out in triplicates and results obtained were reproducible and consistent. The different inhibitory and bactericidal concentration between the four hours duration may be due to the bacterial load at the specific time point. At 0 hr, the colonies were at lag phase where the bacteria concentration is low and there is no significant multiplication of the bacteria, whereas after 4 hr of incubation, the bacterial growth has reached mid-log phase. At the mid-log phase there is exponential growth as the organisms are actively replicating. Thus, the concentration of silver nanoparticles needed to inhibit and kill the organisms is higher.

![Fig. 1 Broth microdilution assay on representative sample to determine minimum inhibitory concentration](image-url)

TABLE II

<table>
<thead>
<tr>
<th>Strains</th>
<th>Ag NP (10 µg)</th>
<th>Gentamicin (10 µg)</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 27853</td>
<td>11.5 ± 0.6</td>
<td>16.7 ± 1.2</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11.3 ± 1.0</td>
<td>15.3 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>11.8 ± 0.5</td>
<td>14.3 ± 1.5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>11.8 ± 0.5</td>
<td>19 ± 1.7</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>11.8 ± 0.5</td>
<td>16 ± 0</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>11.8 ± 1.0</td>
<td>10 ± 0</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>11.5 ± 0.6</td>
<td>10.3 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>11.5 ± 0.6</td>
<td>10 ± 0</td>
<td>-</td>
</tr>
<tr>
<td>43a</td>
<td>11.5 ± 0.6</td>
<td>12.3 ± 1.2</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>11.8 ± 0.5</td>
<td>11 ± 0</td>
<td>-</td>
</tr>
</tbody>
</table>

AgNP: Silver Nanoparticles, Positive control: Gentamicin, Negative control: Water Inhibition zone (mm) Value = Mean ± SD

200 µg/ml ➔
100 µg/ml ➔
50 µg/ml ➔
25 µg/ml ➔
12.5 µg/ml ➔
6.25 µg/ml ➔
0 µg/ml ➔

(a) : Ag NP added at 0 hr
I(b) : Ag NP added after 4 hr
The growth curves of the organism in the presence of Ag nanoparticles were plotted. In this study, the growth patterns of susceptible strains were similar to the MDR strains (Figs 2 and 3). Inhibition percentage is calculated when control sample (0 µg/ml) reaches optimal concentration (stationary phase) which is at 10.5 hr. 100% inhibition was observed at the concentration of ≥50 µg/ml. The presence of these particles at a concentration of 25 µg/ml inhibited bacterial growth by average of 84%. 50% growth inhibition (MIC50) was found to be at concentration of 15 µg/ml. It was also observed that at the concentrations of 6.25, 12.5 and 25 µg/ml, the particles causes growth delay proportionate to the concentration of Ag nanoparticles (increased concentration, increased growth delay). Similar results have been reported on E. coli [9].

This study indicates the possibility of other pathways that may contribute to its effect. The preliminary data from this study could be used to carry out further studies on the mechanisms of action of Ag nanoparticles.

III. CONCLUSION

This study has shown that silver nanoparticles have significant antibacterial effect on P. aeruginosa regardless of its susceptibility to antibiotics. The data presented in this work are novel, thus could lead to new advances in development of antibacterial material that could overcome the multidrug resistance burden. However, further studies have to be conducted on the toxicity level and possible adverse effects that could arise in the use of Ag nanoparticles as an effective antibacterial agent in the health care system.

ACKNOWLEDGEMENT

This work was supported by the excellent fund provided by Universiti Teknologi MARA (UiTM) 600RMI/ST/DANA 5/3/Dst (358/2011)].

REFERENCES


Navindra Kumari Palanisamy, is a senior lecturer and microbiologist affiliated to the Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia.
Zaini Mohd-Zain is an Associate Professor and microbiologist affiliated to the Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia.

Athirah Nur Amirulhusni is a 2nd Year medical student pursuing her Advance Medical Science (AMS) Programme at Universiti Teknologi MARA (UiTM). She works on antimicrobial activity of silver nanoparticles to gram negative bacteria.

Rajkumar Durairaj is Associate Professor at the Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Malaysia. Prior to joining UTAR, he served as a teaching staff and research assistant at University of Greenwich, UK. He’s research interest is in the area of nanoparticles, rheology and electronic materials. Rajkumar has authored and co-authored a total of 50 technical papers published in peer reviewed journal and leading international conferences. Rajkumar received BEng (1st Class Honours) in Manufacturing Engineering and a PhD from the University of Salford, UK and University of Greenwich, UK, respectively. He is a registered Chartered Engineer with Engineering Council (UK) and Senior Member of the IEEE (US).

Liew Jian Ping is a postgraduate student pursuing his Master’s in the area of synthesis and rheological characterisation of silver nanoparticles based dense suspension.