Decomposition of Homeomorphism on Topological Spaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Decomposition of Homeomorphism on Topological Spaces

Authors: Ahmet Z. Ozcelik, Serkan Narli

Abstract:

In this study, two new classes of generalized homeomorphisms are introduced and shown that one of these classes has a group structure. Moreover, some properties of these two homeomorphisms are obtained.

Keywords: Generalized closed set, homeomorphism, gsghomeomorphism, sgs-homeomorphism.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075044

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898

References:


[1] S. P. Arya and T.Nour,''Characterizations of s-normal spaces'' Indian J. Pure appl. Math. 21 (8) (1990) , 717-719.
[2] P. Bhattacharyya and B. K. Lahiri, ''Semi-generalized closed sets in topology'' ?ndian J. Math 29 (1987), 376-82.
[3] N. Biswas, Atti. Accad. ''On characterizations of semi-continuous functions'' Naz. Lincei Rend. Cl. Sci. Fis Mat. Natur. (8)48 (1970),399-402.
[4] N. Biswas, ''On some mappings in topological spaces'' Bull. Calcuta Math. Soc. 61 (1969), 127-135.
[5] S. G. Crossley and S. K. Hildebrand. ''Semi-closure'' Texas J. Sci. 22 (1971), 99-112
[6] S. G. Crossley and S. K. Hildebrand, ''Semi-topological properties'' Fund. Math. 74 (1972), 233-254
[7] R. Devi, H. Maki, K. Balachandran ''Semi-Generalized closed maps And Generalized Semi closed maps'' Mem. Fac. Sci. Kochi Univ. (Math) 14 (1993),41-54
[8] R. Devi and K. Balachandran and H. Maki, ''Semi-Generalized Homeomorphism and Generalized Semi-Homeomorphisms in Topological Spaces'' Indian J.pure appl. Math 26(3) (1995),271-284
[9] N.Levine, ''Generalized closed sets in topology'' Rend. Circ. Mat. Patemo (2) 19 (1970), 89-96.
[10] T. Noiri, ''A generalization of closed mappings'' Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 412-415.
[11] P. Sundaram, H. Maki and K.Balachandran, ''Semi-Generalized continuous maps and semi-T1/2 Spaces'' Bull. Fukuoka Univ. Ed. Part. III, 40(1991).33-40